BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

392 related articles for article (PubMed ID: 25791436)

  • 1. Large-scale automatic reconstruction of neuronal processes from electron microscopy images.
    Kaynig V; Vazquez-Reina A; Knowles-Barley S; Roberts M; Jones TR; Kasthuri N; Miller E; Lichtman J; Pfister H
    Med Image Anal; 2015 May; 22(1):77-88. PubMed ID: 25791436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An efficient conditional random field approach for automatic and interactive neuron segmentation.
    Uzunbas MG; Chen C; Metaxas D
    Med Image Anal; 2016 Jan; 27():31-44. PubMed ID: 26210001
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Geometrical consistent 3D tracing of neuronal processes in ssTEM data.
    Kaynig V; Fuchs TJ; Buhmann JM
    Med Image Comput Comput Assist Interv; 2010; 13(Pt 2):209-16. PubMed ID: 20879317
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optree: a learning-based adaptive watershed algorithm for neuron segmentation.
    Uzunbaş MG; Chen C; Metaxas D
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):97-105. PubMed ID: 25333106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Candidate sampling for neuron reconstruction from anisotropic electron microscopy volumes.
    Funke J; Martel JN; Gerhard S; Andres B; Cireşan DC; Giusti A; Gambardella LM; Schmidhuber J; Pfister H; Cardona A; Cook M
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):17-24. PubMed ID: 25333096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Performance-based classifier combination in atlas-based image segmentation using expectation-maximization parameter estimation.
    Rohlfing T; Russakoff DB; Maurer CR
    IEEE Trans Med Imaging; 2004 Aug; 23(8):983-94. PubMed ID: 15338732
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian segmentation of human facial tissue using 3D MR-CT information fusion, resolution enhancement and partial volume modelling.
    Şener E; Mumcuoglu EU; Hamcan S
    Comput Methods Programs Biomed; 2016 Feb; 124():31-44. PubMed ID: 26574298
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structured patch model for a unified automatic and interactive segmentation framework.
    Park SH; Lee S; Yun ID; Lee SU
    Med Image Anal; 2015 Aug; 24(1):297-312. PubMed ID: 25682219
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Serial reconstruction and montaging from large-field electron microscope tomograms.
    Phan S; Terada M; Lawrence A
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():5772-6. PubMed ID: 19963656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A hybrid framework for 3D medical image segmentation.
    Chen T; Metaxas D
    Med Image Anal; 2005 Dec; 9(6):547-65. PubMed ID: 15896997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NeuTu: Software for Collaborative, Large-Scale, Segmentation-Based Connectome Reconstruction.
    Zhao T; Olbris DJ; Yu Y; Plaza SM
    Front Neural Circuits; 2018; 12():101. PubMed ID: 30483068
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-atlas learner fusion: An efficient segmentation approach for large-scale data.
    Asman AJ; Huo Y; Plassard AJ; Landman BA
    Med Image Anal; 2015 Dec; 26(1):82-91. PubMed ID: 26363845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning to segment neurons with non-local quality measures.
    Kroeger T; Mikula S; Denk W; Koethe U; Hamprecht FA
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):419-27. PubMed ID: 24579168
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The segmentation and visualization of a neuron in the housefly's visual system.
    Anderson JR; Barrett SF; Wilcox MJ
    Biomed Sci Instrum; 2005; 41():235-40. PubMed ID: 15850111
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning from multiple experts with random forests: application to the segmentation of the midbrain in 3D ultrasound.
    Chatelain P; Pauly O; Peter L; Ahmadi SA; Plate A; Bötzel K; Navab N
    Med Image Comput Comput Assist Interv; 2013; 16(Pt 2):230-7. PubMed ID: 24579145
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Supervoxel-based segmentation of mitochondria in em image stacks with learned shape features.
    Lucchi A; Smith K; Achanta R; Knott G; Fua P
    IEEE Trans Med Imaging; 2012 Feb; 31(2):474-86. PubMed ID: 21997252
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection of neuron membranes in electron microscopy images using a serial neural network architecture.
    Jurrus E; Paiva AR; Watanabe S; Anderson JR; Jones BW; Whitaker RT; Jorgensen EM; Marc RE; Tasdizen T
    Med Image Anal; 2010 Dec; 14(6):770-83. PubMed ID: 20598935
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Automatic segmentation of mitochondria in EM data using pairwise affinity factorization and graph-based contour searching.
    Ghita O; Dietlmeier J; Whelan PF
    IEEE Trans Image Process; 2014 Oct; 23(10):4576-86. PubMed ID: 25134083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Real-time 3D interactive segmentation of echocardiographic data through user-based deformation of B-spline explicit active surfaces.
    Barbosa D; Heyde B; Cikes M; Dietenbeck T; Claus P; Friboulet D; Bernard O; D'hooge J
    Comput Med Imaging Graph; 2014 Jan; 38(1):57-67. PubMed ID: 24332441
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small sample learning of superpixel classifiers for EM segmentation.
    Parag T; Plaza S; Scheffer L
    Med Image Comput Comput Assist Interv; 2014; 17(Pt 1):389-97. PubMed ID: 25333142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.