BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 25791448)

  • 1. Evaluation of scavenging rate constants of DOPA and tyrosine enantiomers against multiple reactive oxygen species and methyl radical as measured with ESR trapping method.
    Sueishi Y; Takemoto T
    Bioorg Med Chem Lett; 2015 Apr; 25(8):1808-1810. PubMed ID: 25791448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of in vitro antioxidant and antiradical activities of L-tyrosine and L-Dopa.
    Gülçin I
    Amino Acids; 2007; 32(3):431-8. PubMed ID: 16932840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A determination of antioxidant efficiencies using ESR and computational methods.
    Rhodes CJ; Tran TT; Morris H
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 May; 60(6):1401-10. PubMed ID: 15134741
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 6-Methyl 3-chromonyl 2,4-thiazolidinedione/2,4-imidazolidinedione/2-thioxo-imidazolidine-4-one compounds: novel scavengers of reactive oxygen species.
    Berczyński P; Duchnik E; Kruk I; Piechowska T; Aboul-Enein HY; Bozdağ-Dündar O; Ceylan-Unlusoy M
    Luminescence; 2014 Jun; 29(4):367-73. PubMed ID: 23843284
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antioxidant properties and free radical-scavenging reactivity of a family of hydroxynaphthalenones and dihydroxyanthracenones.
    Rodríguez J; Olea-Azar C; Cavieres C; Norambuena E; Delgado-Castro T; Soto-Delgado J; Araya-Maturana R
    Bioorg Med Chem; 2007 Nov; 15(22):7058-65. PubMed ID: 17845855
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scavenging activity of "beta catechin" on reactive oxygen species generated by photosensitization of riboflavin.
    Kumari MV; Yoneda T; Hiramatsu M
    Biochem Mol Biol Int; 1996 May; 38(6):1163-70. PubMed ID: 8739038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A multiple free-radical scavenging (MULTIS) study on the antioxidant capacity of a neuroprotective drug, edaravone as compared with uric acid, glutathione, and trolox.
    Kamogawa E; Sueishi Y
    Bioorg Med Chem Lett; 2014 Mar; 24(5):1376-9. PubMed ID: 24507926
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Superoxide and hydrogen peroxide formation during enzymatic oxidation of DOPA by phenoloxidase.
    Komarov DA; Slepneva IA; Glupov VV; Khramtsov VV
    Free Radic Res; 2005 Aug; 39(8):853-8. PubMed ID: 16036365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vitro scavenging activity for reactive oxygen species by N-substituted indole-2-carboxylic acid esters.
    Kruk I; Aboul-Enein HY; Michalska T; Lichszteld K; Kubasik-Kladna K; Olgen S
    Luminescence; 2007; 22(4):379-86. PubMed ID: 17471487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of new oligopeptides and their scavenging abilities against active oxygen species.
    Ueda J; Ikota N; Hanaki A; Ozawa T
    Biochem Mol Biol Int; 1994 Aug; 33(6):1041-8. PubMed ID: 7804128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reaction of beta-alkannin (shikonin) with reactive oxygen species: detection of beta-alkannin free radicals.
    Gao D; Kakuma M; Oka S; Sugino K; Sakurai H
    Bioorg Med Chem; 2000 Nov; 8(11):2561-9. PubMed ID: 11092541
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential inhibition of superoxide, hydroxyl and peroxyl radicals by nimesulide and its main metabolite 4-hydroxynimesulide.
    Maffei Facino R; Carini M; Aldini G; Saibene L; Morelli R
    Arzneimittelforschung; 1995 Oct; 45(10):1102-9. PubMed ID: 8595069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seasonal variations of oxygen radical scavenging ability in rosemary leaf extract.
    Sueishi Y; Sue M; Masamoto H
    Food Chem; 2018 Apr; 245():270-274. PubMed ID: 29287370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spin trapping study of reactive oxygen species formation during bopindolol peroxidation.
    Kruk I; Michalska T; Kladna A; Aboul-Enein HY
    Biopolymers; 2002 Oct; 65(2):89-94. PubMed ID: 12209459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antioxidant capacities in various animal sera as measured with multiple free-radical scavenging method.
    Sueishi Y; Nii R; Uda C; Takashima A
    Bioorg Med Chem Lett; 2019 Aug; 29(16):2145-2149. PubMed ID: 31272792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Scavenging of reactive oxygen species by the plant phenols genistein and oleuropein.
    Kruk I; Aboul-Enein HY; Michalska T; Lichszteld K; Kładna A
    Luminescence; 2005; 20(2):81-9. PubMed ID: 15803505
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of scavenging capacities of vegetables by ORAC and EPR.
    Kameya H; Watanabe J; Takano-Ishikawa Y; Todoriki S
    Food Chem; 2014 Feb; 145():866-73. PubMed ID: 24128558
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Scavenging of reactive oxygen species by some nonsteroidal anti-inflammatory drugs and fenofibrate.
    Kładna A; Aboul-Enein HY; Kruk I; Lichszteld K; Michalska T
    Biopolymers; 2006 Jun; 82(2):99-105. PubMed ID: 16245331
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Alleviation effect of arbutin on oxidative stress generated through tyrosinase reaction with L-tyrosine and L-DOPA.
    Tada M; Kohno M; Niwano Y
    BMC Biochem; 2014 Oct; 15():23. PubMed ID: 25297374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure of some thymol derivatives correlated with the radical scavenging activity: theoretical study.
    Javan AJ; Javan MJ
    Food Chem; 2014 Dec; 165():451-9. PubMed ID: 25038698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.