These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
470 related articles for article (PubMed ID: 25791457)
1. The evaluation of the impact of titania nanotube covers morphology and crystal phase on their biological properties. Lewandowska Ż; Piszczek P; Radtke A; Jędrzejewski T; Kozak W; Sadowska B J Mater Sci Mater Med; 2015 Apr; 26(4):163. PubMed ID: 25791457 [TBL] [Abstract][Full Text] [Related]
2. Titania nanotubes with adjustable dimensions for drug reservoir sites and enhanced cell adhesion. Çalışkan N; Bayram C; Erdal E; Karahaliloğlu Z; Denkbaş EB Mater Sci Eng C Mater Biol Appl; 2014 Feb; 35():100-5. PubMed ID: 24411357 [TBL] [Abstract][Full Text] [Related]
3. Biological properties of nanostructured Ti incorporated with Ca, P and Ag by electrochemical method. Li B; Hao J; Min Y; Xin S; Guo L; He F; Liang C; Wang H; Li H Mater Sci Eng C Mater Biol Appl; 2015 Jun; 51():80-6. PubMed ID: 25842111 [TBL] [Abstract][Full Text] [Related]
4. Processing and Characterization of SrTiO₃-TiO₂ Nanoparticle-Nanotube Heterostructures on Titanium for Biomedical Applications. Wang Y; Zhang D; Wen C; Li Y ACS Appl Mater Interfaces; 2015 Jul; 7(29):16018-26. PubMed ID: 26136139 [TBL] [Abstract][Full Text] [Related]
5. The two step nanotube formation on TiZr as scaffolds for cell growth. Grigorescu S; Pruna V; Titorencu I; Jinga VV; Mazare A; Schmuki P; Demetrescu I Bioelectrochemistry; 2014 Aug; 98():39-45. PubMed ID: 24662040 [TBL] [Abstract][Full Text] [Related]
6. Guided proliferation and bone-forming functionality on highly ordered large diameter TiO2 nanotube arrays. Zhang R; Wu H; Ni J; Zhao C; Chen Y; Zheng C; Zhang X Mater Sci Eng C Mater Biol Appl; 2015 Aug; 53():272-9. PubMed ID: 26042715 [TBL] [Abstract][Full Text] [Related]
7. Crystallinity of TiO Dias-Netipanyj MF; Sopchenski L; Gradowski T; Elifio-Esposito S; Popat KC; Soares P J Mater Sci Mater Med; 2020 Oct; 31(11):94. PubMed ID: 33128627 [TBL] [Abstract][Full Text] [Related]
8. Biofilm formation on a TiO₂ nanotube with controlled pore diameter and surface wettability. Anitha VC; Lee JH; Lee J; Banerjee AN; Joo SW; Min BK Nanotechnology; 2015 Feb; 26(6):065102. PubMed ID: 25604920 [TBL] [Abstract][Full Text] [Related]
9. Reduced platelet adhesion and improved corrosion resistance of superhydrophobic TiO₂-nanotube-coated 316L stainless steel. Huang Q; Yang Y; Hu R; Lin C; Sun L; Vogler EA Colloids Surf B Biointerfaces; 2015 Jan; 125():134-41. PubMed ID: 25481855 [TBL] [Abstract][Full Text] [Related]
10. In vitro behavior of MC3T3-E1 preosteoblast with different annealing temperature titania nanotubes. Yu WQ; Zhang YL; Jiang XQ; Zhang FQ Oral Dis; 2010 Oct; 16(7):624-30. PubMed ID: 20604877 [TBL] [Abstract][Full Text] [Related]
11. Titanium dioxide nanotube films: Preparation, characterization and electrochemical biosensitivity towards alkaline phosphatase. Roman I; Trusca RD; Soare ML; Fratila C; Krasicka-Cydzik E; Stan MS; Dinischiotu A Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():374-82. PubMed ID: 24582263 [TBL] [Abstract][Full Text] [Related]
12. Effects of diameters and crystals of titanium dioxide nanotube arrays on blood compatibility and endothelial cell behaviors. Gong Z; Hu Y; Gao F; Quan L; Liu T; Gong T; Pan C Colloids Surf B Biointerfaces; 2019 Dec; 184():110521. PubMed ID: 31569001 [TBL] [Abstract][Full Text] [Related]
13. Effect of crystalline phases of titania nanotube arrays on adipose derived stem cell adhesion and proliferation. Dias-Netipanyj MF; Cowden K; Sopchenski L; Cogo SC; Elifio-Esposito S; Popat KC; Soares P Mater Sci Eng C Mater Biol Appl; 2019 Oct; 103():109850. PubMed ID: 31349471 [TBL] [Abstract][Full Text] [Related]
14. In-vitro biocompatibility and corrosion resistance of strontium incorporated TiO2 nanotube arrays for orthopaedic applications. Indira K; Mudali UK; Rajendran N J Biomater Appl; 2014 Jul; 29(1):113-29. PubMed ID: 24346137 [TBL] [Abstract][Full Text] [Related]
15. Advanced biopolymer-coated drug-releasing titania nanotubes (TNTs) implants with simultaneously enhanced osteoblast adhesion and antibacterial properties. Kumeria T; Mon H; Aw MS; Gulati K; Santos A; Griesser HJ; Losic D Colloids Surf B Biointerfaces; 2015 Jun; 130():255-63. PubMed ID: 25944564 [TBL] [Abstract][Full Text] [Related]
16. The effect of anatase TiO2 nanotube layers on MC3T3-E1 preosteoblast adhesion, proliferation, and differentiation. Yu WQ; Jiang XQ; Zhang FQ; Xu L J Biomed Mater Res A; 2010 Sep; 94(4):1012-22. PubMed ID: 20694968 [TBL] [Abstract][Full Text] [Related]
17. Highly Ordered Nanotube-Like Microstructure on Titanium Dental Implant Surface Fabricated via Anodization Enhanced Cell Adhesion and Migration of Human Gingival Fibroblasts. Deng Z; Yu L; Kuang Y; Zhou Z; Li X Int J Nanomedicine; 2024; 19():2469-2485. PubMed ID: 38476279 [TBL] [Abstract][Full Text] [Related]
18. Cell response of anodized nanotubes on titanium and titanium alloys. Minagar S; Wang J; Berndt CC; Ivanova EP; Wen C J Biomed Mater Res A; 2013 Sep; 101(9):2726-39. PubMed ID: 23436766 [TBL] [Abstract][Full Text] [Related]
19. [Fabrication of titanium dioxide nanotube array and effects of its osteoblast proliferation and alkaline phosphatase activity]. Yu WQ; Jiang XQ; Zhang YL; Zhang FQ Zhonghua Kou Qiang Yi Xue Za Zhi; 2009 Dec; 44(12):751-5. PubMed ID: 20193294 [TBL] [Abstract][Full Text] [Related]
20. Adhesion and proliferation of human fibroblasts on sol-gel coated titania. Meretoja VV; Rossi S; Peltola T; Pelliniemi LJ; Närhi TO J Biomed Mater Res A; 2010 Oct; 95(1):269-75. PubMed ID: 20607871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]