These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 25791461)

  • 1. Chlorhexidine-loaded hydroxyapatite microspheres as an antimicrobial delivery system and its effect on in vivo osteo-conductive properties.
    Soriano-Souza CA; Rossi AL; Mavropoulos E; Hausen MA; Tanaka MN; Calasans-Maia MD; Granjeiro JM; Rocha-Leão MH; Rossi AM
    J Mater Sci Mater Med; 2015 Apr; 26(4):166. PubMed ID: 25791461
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption of chlorhexidine on synthetic hydroxyapatite and in vitro biological activity.
    de Souza CA; Colombo AP; Souto RM; Silva-Boghossian CM; Granjeiro JM; Alves GG; Rossi AM; Rocha-Leão MH
    Colloids Surf B Biointerfaces; 2011 Oct; 87(2):310-8. PubMed ID: 21676601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel cerium doped glass-reinforced hydroxyapatite with antibacterial and osteoconductive properties for bone tissue regeneration.
    Morais DS; Fernandes S; Gomes PS; Fernandes MH; Sampaio P; Ferraz MP; Santos JD; Lopes MA; Sooraj Hussain N
    Biomed Mater; 2015 Sep; 10(5):055008. PubMed ID: 26391473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The synergistic effect of micro/nano-structured and Cu
    Shi F; Liu Y; Zhi W; Xiao D; Li H; Duan K; Qu S; Weng J
    Biomed Mater; 2017 Jun; 12(3):035006. PubMed ID: 28585518
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration.
    Germaini MM; Detsch R; Grünewald A; Magnaudeix A; Lalloue F; Boccaccini AR; Champion E
    Biomed Mater; 2017 Jun; 12(3):035008. PubMed ID: 28351999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anti-sessile bacterial and cytocompatibility properties of CHX-loaded nanohydroxyapatite.
    Barros J; Grenho L; Fernandes MH; Manuel CM; Melo LF; Nunes OC; Monteiro FJ; Ferraz MP
    Colloids Surf B Biointerfaces; 2015 Jun; 130():305-14. PubMed ID: 25936560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hepatocyte growth factor (HGF) adsorption kinetics and enhancement of osteoblast differentiation on hydroxyapatite surfaces.
    Hossain M; Irwin R; Baumann MJ; McCabe LR
    Biomaterials; 2005 May; 26(15):2595-602. PubMed ID: 15585262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Silver oxide-containing hydroxyapatite coating supports osteoblast function and enhances implant anchorage strength in rat femur.
    Eto S; Miyamoto H; Shobuike T; Noda I; Akiyama T; Tsukamoto M; Ueno M; Someya S; Kawano S; Sonohata M; Mawatari M
    J Orthop Res; 2015 Sep; 33(9):1391-7. PubMed ID: 25808232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteogenic efficacy of strontium hydroxyapatite micro-granules in osteoporotic rat model.
    Chandran S; Babu S S; Vs HK; Varma HK; John A
    J Biomater Appl; 2016 Oct; 31(4):499-509. PubMed ID: 27164870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced bone tissue regeneration by antibacterial and osteoinductive silica-HACC-zein composite scaffolds loaded with rhBMP-2.
    Zhou P; Xia Y; Cheng X; Wang P; Xie Y; Xu S
    Biomaterials; 2014 Dec; 35(38):10033-45. PubMed ID: 25260421
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of antibacterial coating on silicone surface via chlorhexidine-loaded nanospheres.
    Phuengkham H; Nasongkla N
    J Mater Sci Mater Med; 2015 Feb; 26(2):78. PubMed ID: 25631275
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vitro and in vivo osteogenic activity of the novel vancomycin-loaded bone-like hydroxyapatite/poly(amino acid) scaffold.
    Cao Z; Jiang D; Yan L; Wu J
    J Biomater Appl; 2016 May; 30(10):1566-77. PubMed ID: 26686585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel hydroxyapatite/chitosan bilayered scaffold for osteochondral tissue-engineering applications: Scaffold design and its performance when seeded with goat bone marrow stromal cells.
    Oliveira JM; Rodrigues MT; Silva SS; Malafaya PB; Gomes ME; Viegas CA; Dias IR; Azevedo JT; Mano JF; Reis RL
    Biomaterials; 2006 Dec; 27(36):6123-37. PubMed ID: 16945410
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microspheres of alginate encapsulated minocycline-loaded nanocrystalline carbonated hydroxyapatite: therapeutic potential and effects on bone regeneration.
    Calasans-Maia MD; Barboza Junior CAB; Soriano-Souza CA; Alves ATNN; Uzeda MJP; Martinez-Zelaya VR; Mavropoulos E; Rocha Leão MH; de Santana RB; Granjeiro JM; Rossi AM
    Int J Nanomedicine; 2019; 14():4559-4571. PubMed ID: 31417258
    [No Abstract]   [Full Text] [Related]  

  • 15. Macrotopographic closure promotes tissue growth and osteogenesis in vitro.
    Juignet L; Charbonnier B; Dumas V; Bouleftour W; Thomas M; Laurent C; Vico L; Douard N; Marchat D; Malaval L
    Acta Biomater; 2017 Apr; 53():536-548. PubMed ID: 28254365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of doxycycline hyclate, chlorhexidine gluconate, and minocycline hydrochloride on osteoblastic proliferation and differentiation in vitro.
    Almazin SM; Dziak R; Andreana S; Ciancio SG
    J Periodontol; 2009 Jun; 80(6):999-1005. PubMed ID: 19485832
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation of the novel three-dimensional porous poly (L-lactic acid)/nano-hydroxyapatite composite scaffold.
    Huang J; Xiong J; Liu J; Zhu W; Chen J; Duan L; Zhang J; Wang D
    Biomed Mater Eng; 2015; 26 Suppl 1():S197-205. PubMed ID: 26405972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mesenchymal stromal cell and osteoblast responses to oxidized titanium surfaces pre-treated with λ = 808 nm GaAlAs diode laser or chlorhexidine: in vitro study.
    Chellini F; Giannelli M; Tani A; Ballerini L; Vallone L; Nosi D; Zecchi-Orlandini S; Sassoli C
    Lasers Med Sci; 2017 Aug; 32(6):1309-1320. PubMed ID: 28551763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanohydroxyapatite microspheres as delivery system for antibiotics: release kinetics, antimicrobial activity, and interaction with osteoblasts.
    Ferraz MP; Mateus AY; Sousa JC; Monteiro FJ
    J Biomed Mater Res A; 2007 Jun; 81(4):994-1004. PubMed ID: 17252559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and characterization of gelatin-hydroxyapatite composite microspheres for hard tissue repair.
    Chao SC; Wang MJ; Pai NS; Yen SK
    Mater Sci Eng C Mater Biol Appl; 2015 Dec; 57():113-22. PubMed ID: 26354246
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.