These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 25791468)

  • 1. Growth kinetics of Chlorococcum humicola - A potential feedstock for biomass with biofuel properties.
    Thomas J; Jayachithra EV
    Ecotoxicol Environ Saf; 2015 Nov; 121():258-62. PubMed ID: 25791468
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photoautotrophic cultivating options of freshwater green microalgal Chlorococcum humicola for biomass and carotenoid production.
    Wannachod T; Wannasutthiwat S; Powtongsook S; Nootong K
    Prep Biochem Biotechnol; 2018 Apr; 48(4):335-342. PubMed ID: 29513632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp.
    Harwati TU; Willke T; Vorlop KD
    Bioresour Technol; 2012 Oct; 121():54-60. PubMed ID: 22858468
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Process energy comparison for the production and harvesting of algal biomass as a biofuel feedstock.
    Weschler MK; Barr WJ; Harper WF; Landis AE
    Bioresour Technol; 2014 Feb; 153():108-15. PubMed ID: 24355501
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selection of microalgae for biodiesel production in a scalable outdoor photobioreactor in north China.
    Xia L; Song S; He Q; Yang H; Hu C
    Bioresour Technol; 2014 Dec; 174():274-80. PubMed ID: 25463808
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth and nitrogen removal capacity of Desmodesmus communis and of a natural microalgae consortium in a batch culture system in view of urban wastewater treatment: part I.
    Samorì G; Samorì C; Guerrini F; Pistocchi R
    Water Res; 2013 Feb; 47(2):791-801. PubMed ID: 23211134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ecological Engineering Helps Maximize Function in Algal Oil Production.
    Jackrel SL; Narwani A; Bentlage B; Levine RB; Hietala DC; Savage PE; Oakley TH; Denef VJ; Cardinale BJ
    Appl Environ Microbiol; 2018 Aug; 84(15):. PubMed ID: 29776927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strategic growth of limnic green microalgae with phycoremediation potential for enhanced production of biomass and biomolecules for sustainable environment.
    Sureshkumar P; Thomas J
    Environ Sci Pollut Res Int; 2019 Dec; 26(34):34702-34712. PubMed ID: 30613879
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biophotonic perception on Desmodesmus sp. VIT growth, lipid and carbohydrate content.
    Sriram S; Seenivasan R
    Bioresour Technol; 2015 Dec; 198():626-33. PubMed ID: 26433787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Strategic enhancement of algal biomass, nutrient uptake and lipid through statistical optimization of nutrient supplementation in coupling Scenedesmus obliquus-like microalgae cultivation and municipal wastewater treatment.
    Zhang C; Zhang Y; Zhuang B; Zhou X
    Bioresour Technol; 2014 Nov; 171():71-9. PubMed ID: 25189511
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Culture of microalgae Chlorella minutissima for biodiesel feedstock production.
    Tang H; Chen M; Garcia ME; Abunasser N; Ng KY; Salley SO
    Biotechnol Bioeng; 2011 Oct; 108(10):2280-7. PubMed ID: 21495011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of different media composition, light intensity and photoperiod on morphology and physiology of freshwater microalgae Ankistrodesmus falcatus--a potential strain for bio-fuel production.
    George B; Pancha I; Desai C; Chokshi K; Paliwal C; Ghosh T; Mishra S
    Bioresour Technol; 2014 Nov; 171():367-74. PubMed ID: 25218209
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Harvesting of microalgal biomass: Efficient method for flocculation through pH modulation.
    Ummalyma SB; Mathew AK; Pandey A; Sukumaran RK
    Bioresour Technol; 2016 Aug; 213():216-221. PubMed ID: 27036330
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae.
    Park H; Lee CG
    Biotechnol J; 2016 Nov; 11(11):1461-1470. PubMed ID: 27782372
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biomass production of multipopulation microalgae in open air pond for biofuel potential.
    Selvakumar P; Umadevi K
    Indian J Exp Biol; 2016 Apr; 54(4):271-9. PubMed ID: 27295924
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of Biomass and Lipid Productivities of Water Surface-Floating Microalgae by Chemical Mutagenesis.
    Nojima D; Ishizuka Y; Muto M; Ujiro A; Kodama F; Yoshino T; Maeda Y; Matsunaga T; Tanaka T
    Mar Drugs; 2017 May; 15(6):. PubMed ID: 28555001
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of a Novel Algal Strain Chlamydomonas debaryana NIREMACC03 for Mass Cultivation, Biofuels Production and Kinetic Studies.
    Mishra S; Singh N; Sarma AK
    Appl Biochem Biotechnol; 2015 Aug; 176(8):2253-66. PubMed ID: 26093613
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Variation of photoautotrophic fatty acid production from a highly CO2 tolerant alga, Chlorococcum littorale, with inorganic carbon over narrow ranges of pH.
    Ota M; Takenaka M; Sato Y; Smith RL; Inomata H
    Biotechnol Prog; 2015; 31(4):1053-7. PubMed ID: 25919350
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Microalgae as sustainable renewable energy feedstock for biofuel production.
    Medipally SR; Yusoff FM; Banerjee S; Shariff M
    Biomed Res Int; 2015; 2015():519513. PubMed ID: 25874216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Chlorococcum pamirum as a potential biodiesel feedstock.
    Feng P; Deng Z; Hu Z; Wang Z; Fan L
    Bioresour Technol; 2014 Jun; 162():115-22. PubMed ID: 24747389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.