These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 25791500)
21. Natural language processing to extract medical problems from electronic clinical documents: performance evaluation. Meystre S; Haug PJ J Biomed Inform; 2006 Dec; 39(6):589-99. PubMed ID: 16359928 [TBL] [Abstract][Full Text] [Related]
22. A simple algorithm for identifying negated findings and diseases in discharge summaries. Chapman WW; Bridewell W; Hanbury P; Cooper GF; Buchanan BG J Biomed Inform; 2001 Oct; 34(5):301-10. PubMed ID: 12123149 [TBL] [Abstract][Full Text] [Related]
23. Neural negated entity recognition in Spanish electronic health records. Santiso S; Pérez A; Casillas A; Oronoz M J Biomed Inform; 2020 May; 105():103419. PubMed ID: 32298847 [TBL] [Abstract][Full Text] [Related]
24. Automated Extraction of Diagnostic Criteria From Electronic Health Records for Autism Spectrum Disorders: Development, Evaluation, and Application. Leroy G; Gu Y; Pettygrove S; Galindo MK; Arora A; Kurzius-Spencer M J Med Internet Res; 2018 Nov; 20(11):e10497. PubMed ID: 30404767 [TBL] [Abstract][Full Text] [Related]
25. Use of general-purpose negation detection to augment concept indexing of medical documents: a quantitative study using the UMLS. Mutalik PG; Deshpande A; Nadkarni PM J Am Med Inform Assoc; 2001; 8(6):598-609. PubMed ID: 11687566 [TBL] [Abstract][Full Text] [Related]
26. Automatically identifying social isolation from clinical narratives for patients with prostate Cancer. Zhu VJ; Lenert LA; Bunnell BE; Obeid JS; Jefferson M; Halbert CH BMC Med Inform Decis Mak; 2019 Mar; 19(1):43. PubMed ID: 30871518 [TBL] [Abstract][Full Text] [Related]
27. Natural Language Processing and Machine Learning to Identify People Who Inject Drugs in Electronic Health Records. Goodman-Meza D; Tang A; Aryanfar B; Vazquez S; Gordon AJ; Goto M; Goetz MB; Shoptaw S; Bui AAT Open Forum Infect Dis; 2022 Sep; 9(9):ofac471. PubMed ID: 36168546 [TBL] [Abstract][Full Text] [Related]
28. Natural language processing of symptoms documented in free-text narratives of electronic health records: a systematic review. Koleck TA; Dreisbach C; Bourne PE; Bakken S J Am Med Inform Assoc; 2019 Apr; 26(4):364-379. PubMed ID: 30726935 [TBL] [Abstract][Full Text] [Related]
29. Natural language processing to identify lupus nephritis phenotype in electronic health records. Deng Y; Pacheco JA; Ghosh A; Chung A; Mao C; Smith JC; Zhao J; Wei WQ; Barnado A; Dorn C; Weng C; Liu C; Cordon A; Yu J; Tedla Y; Kho A; Ramsey-Goldman R; Walunas T; Luo Y BMC Med Inform Decis Mak; 2024 Mar; 22(Suppl 2):348. PubMed ID: 38433189 [TBL] [Abstract][Full Text] [Related]
30. Finding Cervical Cancer Symptoms in Swedish Clinical Text using a Machine Learning Approach and NegEx. Weegar R; Kvist M; Sundström K; Brunak S; Dalianis H AMIA Annu Symp Proc; 2015; 2015():1296-305. PubMed ID: 26958270 [TBL] [Abstract][Full Text] [Related]
31. Detecting negation and scope in Chinese clinical notes using character and word embedding. Kang T; Zhang S; Xu N; Wen D; Zhang X; Lei J Comput Methods Programs Biomed; 2017 Mar; 140():53-59. PubMed ID: 28254090 [TBL] [Abstract][Full Text] [Related]
32. Ascertainment of Delirium Status Using Natural Language Processing From Electronic Health Records. Fu S; Lopes GS; Pagali SR; Thorsteinsdottir B; LeBrasseur NK; Wen A; Liu H; Rocca WA; Olson JE; St Sauver J; Sohn S J Gerontol A Biol Sci Med Sci; 2022 Mar; 77(3):524-530. PubMed ID: 35239951 [TBL] [Abstract][Full Text] [Related]
33. Syntactic dependency parsers for biomedical-NLP. Cohen R; Elhadad M AMIA Annu Symp Proc; 2012; 2012():121-8. PubMed ID: 23304280 [TBL] [Abstract][Full Text] [Related]
34. [Short Text Classification of EMR Based on Entities and Dependency Parser]. Lv Y; Deng Y; Liu M; Cui Y; Lu Q Zhongguo Yi Liao Qi Xie Za Zhi; 2016; 40(4):245-9. PubMed ID: 29775515 [TBL] [Abstract][Full Text] [Related]
35. Identifying QT prolongation from ECG impressions using a general-purpose Natural Language Processor. Denny JC; Miller RA; Waitman LR; Arrieta MA; Peterson JF Int J Med Inform; 2009 Apr; 78 Suppl 1(Suppl 1):S34-42. PubMed ID: 18938105 [TBL] [Abstract][Full Text] [Related]
36. Trie-based rule processing for clinical NLP: A use-case study of n-trie, making the ConText algorithm more efficient and scalable. Shi J; Hurdle JF J Biomed Inform; 2018 Sep; 85():106-113. PubMed ID: 30092358 [TBL] [Abstract][Full Text] [Related]
37. Domain adaption of parsing for operative notes. Wang Y; Pakhomov S; Ryan JO; Melton GB J Biomed Inform; 2015 Apr; 54():1-9. PubMed ID: 25661593 [TBL] [Abstract][Full Text] [Related]
38. Ensembles of natural language processing systems for portable phenotyping solutions. Liu C; Ta CN; Rogers JR; Li Z; Lee J; Butler AM; Shang N; Kury FSP; Wang L; Shen F; Liu H; Ena L; Friedman C; Weng C J Biomed Inform; 2019 Dec; 100():103318. PubMed ID: 31655273 [TBL] [Abstract][Full Text] [Related]
39. Does BERT need domain adaptation for clinical negation detection? Lin C; Bethard S; Dligach D; Sadeque F; Savova G; Miller TA J Am Med Inform Assoc; 2020 Apr; 27(4):584-591. PubMed ID: 32044989 [TBL] [Abstract][Full Text] [Related]
40. Adaptation of the NegEx algorithm to Veterans Affairs electronic text notes for detection of influenza-like illness (ILI). South BR; Phansalkar S; Swaminathan AD; Delisle S; Perl T; Samore MH AMIA Annu Symp Proc; 2007 Oct; ():1118. PubMed ID: 18694215 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]