BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25791631)

  • 1. Integrating motif, DNA accessibility and gene expression data to build regulatory maps in an organism.
    Blatti C; Kazemian M; Wolfe S; Brodsky M; Sinha S
    Nucleic Acids Res; 2015 Apr; 43(8):3998-4012. PubMed ID: 25791631
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks.
    Marbach D; Roy S; Ay F; Meyer PE; Candeias R; Kahveci T; Bristow CA; Kellis M
    Genome Res; 2012 Jul; 22(7):1334-49. PubMed ID: 22456606
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Integrative analysis of the zinc finger transcription factor Lame duck in the Drosophila myogenic gene regulatory network.
    Busser BW; Huang D; Rogacki KR; Lane EA; Shokri L; Ni T; Gamble CE; Gisselbrecht SS; Zhu J; Bulyk ML; Ovcharenko I; Michelson AM
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20768-73. PubMed ID: 23184988
    [TBL] [Abstract][Full Text] [Related]  

  • 4. i-cisTarget: an integrative genomics method for the prediction of regulatory features and cis-regulatory modules.
    Herrmann C; Van de Sande B; Potier D; Aerts S
    Nucleic Acids Res; 2012 Aug; 40(15):e114. PubMed ID: 22718975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. De novo prediction of cis-regulatory elements and modules through integrative analysis of a large number of ChIP datasets.
    Niu M; Tabari ES; Su Z
    BMC Genomics; 2014 Dec; 15():1047. PubMed ID: 25442502
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting transcription factor binding motifs from DNA-binding domains, chromatin accessibility and gene expression data.
    Zamanighomi M; Lin Z; Wang Y; Jiang R; Wong WH
    Nucleic Acids Res; 2017 Jun; 45(10):5666-5677. PubMed ID: 28472398
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short DNA sequence patterns accurately identify broadly active human enhancers.
    Colbran LL; Chen L; Capra JA
    BMC Genomics; 2017 Jul; 18(1):536. PubMed ID: 28716036
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CCAT: Combinatorial Code Analysis Tool for transcriptional regulation.
    Jiang P; Singh M
    Nucleic Acids Res; 2014 Mar; 42(5):2833-47. PubMed ID: 24366875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Role of Chromatin Accessibility in cis-Regulatory Evolution.
    Peng PC; Khoueiry P; Girardot C; Reddington JP; Garfield DA; Furlong EEM; Sinha S
    Genome Biol Evol; 2019 Jul; 11(7):1813-1828. PubMed ID: 31114856
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diverse patterns of genomic targeting by transcriptional regulators in Drosophila melanogaster.
    Slattery M; Ma L; Spokony RF; Arthur RK; Kheradpour P; Kundaje A; Nègre N; Crofts A; Ptashkin R; Zieba J; Ostapenko A; Suchy S; Victorsen A; Jameel N; Grundstad AJ; Gao W; Moran JR; Rehm EJ; Grossman RL; Kellis M; White KP
    Genome Res; 2014 Jul; 24(7):1224-35. PubMed ID: 24985916
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using cisTargetX to predict transcriptional targets and networks in Drosophila.
    Potier D; Atak ZK; Sanchez MN; Herrmann C; Aerts S
    Methods Mol Biol; 2012; 786():291-314. PubMed ID: 21938634
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling gene regulation from paired expression and chromatin accessibility data.
    Duren Z; Chen X; Jiang R; Wang Y; Wong WH
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):E4914-E4923. PubMed ID: 28576882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulators form diverse groups with context-dependent regulatory functions.
    Stampfel G; Kazmar T; Frank O; Wienerroither S; Reiter F; Stark A
    Nature; 2015 Dec; 528(7580):147-51. PubMed ID: 26550828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational strategies for the genome-wide identification of cis-regulatory elements and transcriptional targets.
    Aerts S
    Curr Top Dev Biol; 2012; 98():121-45. PubMed ID: 22305161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mapping gene regulatory networks in Drosophila eye development by large-scale transcriptome perturbations and motif inference.
    Potier D; Davie K; Hulselmans G; Naval Sanchez M; Haagen L; Huynh-Thu VA; Koldere D; Celik A; Geurts P; Christiaens V; Aerts S
    Cell Rep; 2014 Dec; 9(6):2290-303. PubMed ID: 25533349
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hormone-responsive enhancer-activity maps reveal predictive motifs, indirect repression, and targeting of closed chromatin.
    Shlyueva D; Stelzer C; Gerlach D; Yáñez-Cuna JO; Rath M; Boryń ŁM; Arnold CD; Stark A
    Mol Cell; 2014 Apr; 54(1):180-192. PubMed ID: 24685159
    [TBL] [Abstract][Full Text] [Related]  

  • 17. iSLIM: a comprehensive approach to mapping and characterizing gene regulatory networks.
    Rockel S; Geertz M; Hens K; Deplancke B; Maerkl SJ
    Nucleic Acids Res; 2013 Feb; 41(4):e52. PubMed ID: 23258699
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancers display constrained sequence flexibility and context-specific modulation of motif function.
    Reiter F; de Almeida BP; Stark A
    Genome Res; 2023 Mar; 33(3):346-358. PubMed ID: 36941077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widespread evidence of cooperative DNA binding by transcription factors in Drosophila development.
    Kazemian M; Pham H; Wolfe SA; Brodsky MH; Sinha S
    Nucleic Acids Res; 2013 Sep; 41(17):8237-52. PubMed ID: 23847101
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MEDEA: analysis of transcription factor binding motifs in accessible chromatin.
    Mariani L; Weinand K; Gisselbrecht SS; Bulyk ML
    Genome Res; 2020 May; 30(5):736-748. PubMed ID: 32424069
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.