BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 25791752)

  • 1. In vitro cytotoxicity of gold nanorods in A549 cells.
    Tang Y; Shen Y; Huang L; Lv G; Lei C; Fan X; Lin F; Zhang Y; Wu L; Yang Y
    Environ Toxicol Pharmacol; 2015 Mar; 39(2):871-8. PubMed ID: 25791752
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Laser immunotherapy with gold nanorods causes selective killing of tumour cells.
    C S R; Kumar J; V R; M V; Abraham A
    Pharmacol Res; 2012 Feb; 65(2):261-9. PubMed ID: 22115972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cytotoxicity, oxidative stress, and inflammation in human Hep G2 liver epithelial cells following exposure to gold nanorods.
    Lingabathula H; Yellu N
    Toxicol Mech Methods; 2016 Jun; 26(5):340-7. PubMed ID: 27098122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular uptake and cytotoxicity of gold nanorods: molecular origin of cytotoxicity and surface effects.
    Alkilany AM; Nagaria PK; Hexel CR; Shaw TJ; Murphy CJ; Wyatt MD
    Small; 2009 Mar; 5(6):701-8. PubMed ID: 19226599
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro toxicity studies of polymer-coated gold nanorods.
    Rayavarapu RG; Petersen W; Hartsuiker L; Chin P; Janssen H; van Leeuwen FW; Otto C; Manohar S; van Leeuwen TG
    Nanotechnology; 2010 Apr; 21(14):145101. PubMed ID: 20220222
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PM2.5-induced oxidative stress triggers autophagy in human lung epithelial A549 cells.
    Deng X; Zhang F; Rui W; Long F; Wang L; Feng Z; Chen D; Ding W
    Toxicol In Vitro; 2013 Sep; 27(6):1762-70. PubMed ID: 23685237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape and surface chemistry effects on the cytotoxicity and cellular uptake of metallic nanorods and nanospheres.
    Favi PM; Valencia MM; Elliott PR; Restrepo A; Gao M; Huang H; Pavon JJ; Webster TJ
    J Biomed Mater Res A; 2015 Dec; 103(12):3940-55. PubMed ID: 26053238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vitro toxicity evaluation of graphene oxide on A549 cells.
    Chang Y; Yang ST; Liu JH; Dong E; Wang Y; Cao A; Liu Y; Wang H
    Toxicol Lett; 2011 Feb; 200(3):201-10. PubMed ID: 21130147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface chemistry but not aspect ratio mediates the biological toxicity of gold nanorods in vitro and in vivo.
    Wan J; Wang JH; Liu T; Xie Z; Yu XF; Li W
    Sci Rep; 2015 Jun; 5():11398. PubMed ID: 26096816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface chemistry of gold nanorods: origin of cell membrane damage and cytotoxicity.
    Wang L; Jiang X; Ji Y; Bai R; Zhao Y; Wu X; Chen C
    Nanoscale; 2013 Sep; 5(18):8384-91. PubMed ID: 23873113
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Role of Gold Nanorods in the Response of Prostate Cancer and Normal Prostate Cells to Ionizing Radiation-In Vitro Model.
    Musielak M; Boś-Liedke A; Piotrowski I; Kozak M; Suchorska W
    Int J Mol Sci; 2020 Dec; 22(1):. PubMed ID: 33374960
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Silica nanoparticles-induced cytotoxicity, oxidative stress and apoptosis in cultured A431 and A549 cells.
    Ahamed M
    Hum Exp Toxicol; 2013 Feb; 32(2):186-95. PubMed ID: 23315277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Trafficking of gold nanorods in breast cancer cells: uptake, lysosome maturation, and elimination.
    Zhang W; Ji Y; Wu X; Xu H
    ACS Appl Mater Interfaces; 2013 Oct; 5(19):9856-65. PubMed ID: 24033123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytotoxicity of Gold Nanorods and Nanowires on Cultivated Neural Precursor Cells.
    Kim YJ; Yoo CJ; Lee U; Yoo YM
    J Nanosci Nanotechnol; 2015 Aug; 15(8):5617-23. PubMed ID: 26369127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro toxicity of silica nanoparticles in human lung cancer cells.
    Lin W; Huang YW; Zhou XD; Ma Y
    Toxicol Appl Pharmacol; 2006 Dec; 217(3):252-9. PubMed ID: 17112558
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Induction of cell death in a glioblastoma line by hyperthermic therapy based on gold nanorods.
    Fernandez Cabada T; Sanchez Lopez de Pablo C; Martinez Serrano A; del Pozo Guerrero F; Serrano Olmedo JJ; Ramos Gomez M
    Int J Nanomedicine; 2012; 7():1511-23. PubMed ID: 22619509
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Oxidative stress induced apoptosis of human lung carcinoma (A549) cells by a novel copper nanorod formulation.
    Thounaojam MC; Jadeja RN; Valodkar M; Nagar PS; Devkar RV; Thakore S
    Food Chem Toxicol; 2011 Nov; 49(11):2990-6. PubMed ID: 21820027
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Europium-doped Gd2O3 nanotubes cause the necrosis of primary mouse bone marrow stromal cells through lysosome and mitochondrion damage.
    Jin Y; Chen S; Duan J; Jia G; Zhang J
    J Inorg Biochem; 2015 May; 146():28-36. PubMed ID: 25725393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro evaluation of cytotoxicity and oxidative stress induced by multiwalled carbon nanotubes in murine RAW 264.7 macrophages and human A549 lung cells.
    Chen B; Liu Y; Song WM; Hayashi Y; Ding XC; Li WH
    Biomed Environ Sci; 2011 Dec; 24(6):593-601. PubMed ID: 22365394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nano-SiO2 induces apoptosis via activation of p53 and Bax mediated by oxidative stress in human hepatic cell line.
    Ye Y; Liu J; Xu J; Sun L; Chen M; Lan M
    Toxicol In Vitro; 2010 Apr; 24(3):751-8. PubMed ID: 20060462
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.