BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

258 related articles for article (PubMed ID: 25792252)

  • 1. Ethylene Signaling Influences Light-Regulated Development in Pea.
    Weller JL; Foo EM; Hecht V; Ridge S; Vander Schoor JK; Reid JB
    Plant Physiol; 2015 Sep; 169(1):115-24. PubMed ID: 25792252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryptochrome 1 contributes to blue-light sensing in pea.
    Platten JD; Foo E; Elliott RC; Hecht V; Reid JB; Weller JL
    Plant Physiol; 2005 Nov; 139(3):1472-82. PubMed ID: 16244154
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light regulation of gibberellin biosynthesis in pea is mediated through the COP1/HY5 pathway.
    Weller JL; Hecht V; Vander Schoor JK; Davidson SE; Ross JJ
    Plant Cell; 2009 Mar; 21(3):800-13. PubMed ID: 19329557
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A role for ethylene in the phytochrome-mediated control of vegetative development.
    Foo E; Ross JJ; Davies NW; Reid JB; Weller JL
    Plant J; 2006 Jun; 46(6):911-21. PubMed ID: 16805726
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting.
    Urquhart S; Foo E; Reid JB
    Physiol Plant; 2015 Mar; 153(3):392-402. PubMed ID: 24962787
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The involvement of indole-3-acetic acid in the control of stem elongation in dark- and light-grown pea (Pisum sativum) seedlings.
    Sorce C; Picciarelli P; Calistri G; Lercari B; Ceccarelli N
    J Plant Physiol; 2008; 165(5):482-9. PubMed ID: 17706834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions between ethylene, gibberellins, and brassinosteroids in the development of rhizobial and mycorrhizal symbioses of pea.
    Foo E; McAdam EL; Weller JL; Reid JB
    J Exp Bot; 2016 Apr; 67(8):2413-24. PubMed ID: 26889005
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A dominant mutation in the pea PHYA gene confers enhanced responses to light and impairs the light-dependent degradation of phytochrome A.
    Weller JL; Batge SL; Smith JJ; Kerckhoffs LH; Sineshchekov VA; Murfet IC; Reid JB
    Plant Physiol; 2004 Aug; 135(4):2186-95. PubMed ID: 15286297
    [TBL] [Abstract][Full Text] [Related]  

  • 9. RCN1-regulated phosphatase activity and EIN2 modulate hypocotyl gravitropism by a mechanism that does not require ethylene signaling.
    Muday GK; Brady SR; Argueso C; Deruère J; Kieber JJ; DeLong A
    Plant Physiol; 2006 Aug; 141(4):1617-29. PubMed ID: 16798939
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cryptochrome and phytochrome cooperatively but independently reduce active gibberellin content in rice seedlings under light irradiation.
    Hirose F; Inagaki N; Hanada A; Yamaguchi S; Kamiya Y; Miyao A; Hirochika H; Takano M
    Plant Cell Physiol; 2012 Sep; 53(9):1570-82. PubMed ID: 22764280
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A soybean dual-specificity kinase, GmSARK, and its Arabidopsis homolog, AtSARK, regulate leaf senescence through synergistic actions of auxin and ethylene.
    Xu F; Meng T; Li P; Yu Y; Cui Y; Wang Y; Gong Q; Wang NN
    Plant Physiol; 2011 Dec; 157(4):2131-53. PubMed ID: 22034630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geomagnetic field impacts on cryptochrome and phytochrome signaling.
    Agliassa C; Narayana R; Christie JM; Maffei ME
    J Photochem Photobiol B; 2018 Aug; 185():32-40. PubMed ID: 29864723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The central role of PhEIN2 in ethylene responses throughout plant development in petunia.
    Shibuya K; Barry KG; Ciardi JA; Loucas HM; Underwood BA; Nourizadeh S; Ecker JR; Klee HJ; Clark DG
    Plant Physiol; 2004 Oct; 136(2):2900-12. PubMed ID: 15466231
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The basic helix-loop-helix transcription factor PIF5 acts on ethylene biosynthesis and phytochrome signaling by distinct mechanisms.
    Khanna R; Shen Y; Marion CM; Tsuchisaka A; Theologis A; Schäfer E; Quail PH
    Plant Cell; 2007 Dec; 19(12):3915-29. PubMed ID: 18065691
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interaction of phytochromes A and B in the control of de-etiolation and flowering in pea.
    Weller JL; Beauchamp N; Kerckhoffs LH; Platten JD; Reid JB
    Plant J; 2001 May; 26(3):283-94. PubMed ID: 11439117
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Involvement of COP1 in ethylene- and light-regulated hypocotyl elongation.
    Liang X; Wang H; Mao L; Hu Y; Dong T; Zhang Y; Wang X; Bi Y
    Planta; 2012 Dec; 236(6):1791-802. PubMed ID: 22890836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ectopic expression of a phytochrome B gene from Chinese cabbage (Brassica rapa L. ssp. pekinensis) in Arabidopsis thaliana promotes seedling de-etiolation, dwarfing in mature plants, and delayed flowering.
    Song MF; Zhang S; Hou P; Shang HZ; Gu HK; Li JJ; Xiao Y; Guo L; Su L; Gao JW; Yang JP
    Plant Mol Biol; 2015 Apr; 87(6):633-43. PubMed ID: 25724426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mutant crispa reveals multiple roles for PHANTASTICA in pea compound leaf development.
    Tattersall AD; Turner L; Knox MR; Ambrose MJ; Ellis TH; Hofer JM
    Plant Cell; 2005 Apr; 17(4):1046-60. PubMed ID: 15749758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phenotypic characterization of the CRISPA (ARP gene) mutant of pea (Pisum sativum; Fabaceae): a reevaluation.
    DeMason DA; Chetty V
    Am J Bot; 2014 Mar; 101(3):408-27. PubMed ID: 24638162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Overexpression of a phytochrome-regulated tandem zinc finger protein gene, OsTZF1, confers hypersensitivity to ABA and hyposensitivity to red light and far-red light in rice seedlings.
    Zhang C; Zhang F; Zhou J; Fan Z; Chen F; Ma H; Xie X
    Plant Cell Rep; 2012 Jul; 31(7):1333-43. PubMed ID: 22572927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.