These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 25792279)

  • 21. Polymer hollow fiber three-dimensional matrices with controllable cavity and shell thickness.
    Moroni L; Schotel R; Sohier J; de Wijn JR; van Blitterswijk CA
    Biomaterials; 2006 Dec; 27(35):5918-26. PubMed ID: 16935328
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Tuning dual-drug release from composite scaffolds for bone regeneration.
    Paris JL; Román J; Manzano M; Cabañas MV; Vallet-Regí M
    Int J Pharm; 2015; 486(1-2):30-7. PubMed ID: 25814035
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Review paper: critical issues in tissue engineering: biomaterials, cell sources, angiogenesis, and drug delivery systems.
    Naderi H; Matin MM; Bahrami AR
    J Biomater Appl; 2011 Nov; 26(4):383-417. PubMed ID: 21926148
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimization of release pattern of FGF-2 and BMP-2 for osteogenic differentiation of low-population density hMSCs.
    Lei L; Wang S; Wu H; Ju W; Peng J; Qahtan AS; Chen C; Lu Y; Peng J; Zhang X; Nie H
    J Biomed Mater Res A; 2015 Jan; 103(1):252-61. PubMed ID: 24639043
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of mesoporous silica-gel core-shell structural microparticles and their multiple drug delivery.
    Li X; Zhi D; Hu J; Xu S; Liu H; Hu Y
    Drug Deliv; 2015 Jan; 22(1):69-78. PubMed ID: 24266606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Coaxial additive manufacture of biomaterial composite scaffolds for tissue engineering.
    Cornock R; Beirne S; Thompson B; Wallace GG
    Biofabrication; 2014 Jun; 6(2):025002. PubMed ID: 24658021
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering.
    Zhao C; Tan A; Pastorin G; Ho HK
    Biotechnol Adv; 2013; 31(5):654-68. PubMed ID: 22902273
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electrospun cellular microenvironments: Understanding controlled release and scaffold structure.
    Szentivanyi A; Chakradeo T; Zernetsch H; Glasmacher B
    Adv Drug Deliv Rev; 2011 Apr; 63(4-5):209-20. PubMed ID: 21145932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Three-dimensional biomaterial degradation - Material choice, design and extrinsic factor considerations.
    Yildirimer L; Seifalian AM
    Biotechnol Adv; 2014; 32(5):984-99. PubMed ID: 24858478
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Novel composite fiber structures to provide drug/protein delivery for medical implants and tissue regeneration.
    Zilberman M
    Acta Biomater; 2007 Jan; 3(1):51-7. PubMed ID: 16956799
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradable chitosan scaffolds containing microspheres as carriers for controlled transforming growth factor-beta1 delivery for cartilage tissue engineering.
    Cai DZ; Zeng C; Quan DP; Bu LS; Wang K; Lu HD; Li XF
    Chin Med J (Engl); 2007 Feb; 120(3):197-203. PubMed ID: 17355821
    [TBL] [Abstract][Full Text] [Related]  

  • 32. TGF-β3 encapsulated PLCL scaffold by a supercritical CO2-HFIP co-solvent system for cartilage tissue engineering.
    Kim SH; Kim SH; Jung Y
    J Control Release; 2015 May; 206():101-7. PubMed ID: 25804870
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Controlled drug delivery in tissue engineering.
    Biondi M; Ungaro F; Quaglia F; Netti PA
    Adv Drug Deliv Rev; 2008 Jan; 60(2):229-42. PubMed ID: 18031864
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Porous PLGA scaffolds for controlled release of naked and polyethyleneimine-complexed DNA.
    Ravi N; Gupta G; Milbrandt TA; Puleo DA
    Biomed Mater; 2012 Oct; 7(5):055007. PubMed ID: 22909549
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of collagen-hydroxyapatite scaffolds incorporating PLGA and alginate microparticles for the controlled delivery of rhBMP-2 for bone tissue engineering.
    Quinlan E; López-Noriega A; Thompson E; Kelly HM; Cryan SA; O'Brien FJ
    J Control Release; 2015 Jan; 198():71-9. PubMed ID: 25481441
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Controllable dual protein delivery through electrospun fibrous scaffolds with different hydrophilicities.
    Xu W; Atala A; Yoo JJ; Lee SJ
    Biomed Mater; 2013 Feb; 8(1):014104. PubMed ID: 23353662
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J; Yu X
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Encapsulation of mesenchymal stem cells by bioscaffolds protects cell survival and attenuates neuroinflammatory reaction in injured brain tissue after transplantation.
    Sarnowska A; Jablonska A; Jurga M; Dainiak M; Strojek L; Drela K; Wright K; Tripathi A; Kumar A; Jungvid H; Lukomska B; Forraz N; McGuckin C; Domanska-Janik K
    Cell Transplant; 2013; 22 Suppl 1():S67-82. PubMed ID: 24070175
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Functional cell-laden alginate scaffolds consisting of core/shell struts for tissue regeneration.
    Ahn S; Lee H; Kim G
    Carbohydr Polym; 2013 Oct; 98(1):936-42. PubMed ID: 23987431
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Surface engineered and drug releasing pre-fabricated scaffolds for tissue engineering.
    Chung HJ; Park TG
    Adv Drug Deliv Rev; 2007 May; 59(4-5):249-62. PubMed ID: 17482310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.