These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Calcium-containing crystals enhance receptor activator of nuclear factor κB ligand/macrophage colony-stimulating factor-mediated osteoclastogenesis via extracellular-signal-regulated kinase and p38 pathways. Chang CC; Tsai YH; Liu Y; Lin SY; Liang YC Rheumatology (Oxford); 2015 Oct; 54(10):1913-22. PubMed ID: 25998451 [TBL] [Abstract][Full Text] [Related]
3. Aging increases stromal/osteoblastic cell-induced osteoclastogenesis and alters the osteoclast precursor pool in the mouse. Cao JJ; Wronski TJ; Iwaniec U; Phleger L; Kurimoto P; Boudignon B; Halloran BP J Bone Miner Res; 2005 Sep; 20(9):1659-68. PubMed ID: 16059637 [TBL] [Abstract][Full Text] [Related]
4. Dual effect of WIN-34B on osteogenesis and osteoclastogenesis in cytokine-induced mesenchymal stem cells and bone marrow cells. Seo BK; Ryu HK; Park YC; Huh JE; Baek YH J Ethnopharmacol; 2016 Dec; 193():227-236. PubMed ID: 27401292 [TBL] [Abstract][Full Text] [Related]
5. 12-O-tetradecanoylphorbol-13-acetate (TPA) inhibits osteoclastogenesis by suppressing RANKL-induced NF-kappaB activation. Wang C; Steer JH; Joyce DA; Yip KH; Zheng MH; Xu J J Bone Miner Res; 2003 Dec; 18(12):2159-68. PubMed ID: 14672351 [TBL] [Abstract][Full Text] [Related]
6. Caffeic acid 3,4-dihydroxy-phenethyl ester suppresses receptor activator of NF-κB ligand–induced osteoclastogenesis and prevents ovariectomy-induced bone loss through inhibition of mitogen-activated protein kinase/activator protein 1 and Ca2+–nuclear factor of activated T-cells cytoplasmic 1 signaling pathways. Wu X; Li Z; Yang Z; Zheng C; Jing J; Chen Y; Ye X; Lian X; Qiu W; Yang F; Tang J; Xiao J; Liu M; Luo J J Bone Miner Res; 2012 Jun; 27(6):1298-1308. PubMed ID: 22337253 [TBL] [Abstract][Full Text] [Related]
7. Cross-talk between the interleukin-6 and prostaglandin E(2) signaling systems results in enhancement of osteoclastogenesis through effects on the osteoprotegerin/receptor activator of nuclear factor-{kappa}B (RANK) ligand/RANK system. Liu XH; Kirschenbaum A; Yao S; Levine AC Endocrinology; 2005 Apr; 146(4):1991-8. PubMed ID: 15618359 [TBL] [Abstract][Full Text] [Related]
8. Osteoblast and osteoclast responses to A/B type carbonate-substituted hydroxyapatite ceramics for bone regeneration. Germaini MM; Detsch R; Grünewald A; Magnaudeix A; Lalloue F; Boccaccini AR; Champion E Biomed Mater; 2017 Jun; 12(3):035008. PubMed ID: 28351999 [TBL] [Abstract][Full Text] [Related]
9. Osteogenic and osteoclastogenic differentiation of co-cultured cells in polylactic acid-nanohydroxyapatite fiber scaffolds. Morelli S; Salerno S; Holopainen J; Ritala M; De Bartolo L J Biotechnol; 2015 Jun; 204():53-62. PubMed ID: 25858154 [TBL] [Abstract][Full Text] [Related]
10. Interleukin-20 differentially regulates bone mesenchymal stem cell activities in RANKL-induced osteoclastogenesis through the OPG/RANKL/RANK axis and the NF-κB, MAPK and AKT signalling pathways. Meng B; Wu D; Cheng Y; Huang P; Liu Y; Gan L; Liu C; Cao Y Scand J Immunol; 2020 May; 91(5):e12874. PubMed ID: 32090353 [TBL] [Abstract][Full Text] [Related]
11. CTRP3 acts as a negative regulator of osteoclastogenesis through AMPK-c-Fos-NFATc1 signaling in vitro and RANKL-induced calvarial bone destruction in vivo. Kim JY; Min JY; Baek JM; Ahn SJ; Jun HY; Yoon KH; Choi MK; Lee MS; Oh J Bone; 2015 Oct; 79():242-51. PubMed ID: 26103094 [TBL] [Abstract][Full Text] [Related]
12. The cross-talk between osteoclasts and osteoblasts in response to strontium treatment: involvement of osteoprotegerin. Peng S; Liu XS; Huang S; Li Z; Pan H; Zhen W; Luk KD; Guo XE; Lu WW Bone; 2011 Dec; 49(6):1290-8. PubMed ID: 21925296 [TBL] [Abstract][Full Text] [Related]
13. Crosstalk of osteoblast and osteoclast precursors on mineralized collagen--towards an in vitro model for bone remodeling. Bernhardt A; Thieme S; Domaschke H; Springer A; Rösen-Wolff A; Gelinsky M J Biomed Mater Res A; 2010 Dec; 95(3):848-56. PubMed ID: 20824694 [TBL] [Abstract][Full Text] [Related]
14. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering. Chen G; Dong C; Yang L; Lv Y ACS Appl Mater Interfaces; 2015 Jul; 7(29):15790-802. PubMed ID: 26151287 [TBL] [Abstract][Full Text] [Related]
15. Ethyl-2, 5-dihydroxybenzoate displays dual activity by promoting osteoblast differentiation and inhibiting osteoclast differentiation. Kwon BJ; Lee MH; Koo MA; Kim MS; Seon GM; Han JJ; Park JC Biochem Biophys Res Commun; 2016 Mar; 471(3):335-41. PubMed ID: 26869515 [TBL] [Abstract][Full Text] [Related]
16. Mesoporous silica-layered biopolymer hybrid nanofibrous scaffold: a novel nanobiomatrix platform for therapeutics delivery and bone regeneration. Singh RK; Jin GZ; Mahapatra C; Patel KD; Chrzanowski W; Kim HW ACS Appl Mater Interfaces; 2015 Apr; 7(15):8088-98. PubMed ID: 25768431 [TBL] [Abstract][Full Text] [Related]
17. Leonurine hydrochloride inhibits osteoclastogenesis and prevents osteoporosis associated with estrogen deficiency by inhibiting the NF-κB and PI3K/Akt signaling pathways. Yuan FL; Xu RS; Jiang DL; He XL; Su Q; Jin C; Li X Bone; 2015 Jun; 75():128-37. PubMed ID: 25708053 [TBL] [Abstract][Full Text] [Related]
18. Microrough implant surface topographies increase osteogenesis by reducing osteoclast formation and activity. Lossdörfer S; Schwartz Z; Wang L; Lohmann CH; Turner JD; Wieland M; Cochran DL; Boyan BD J Biomed Mater Res A; 2004 Sep; 70(3):361-9. PubMed ID: 15293309 [TBL] [Abstract][Full Text] [Related]
19. Siglec-15 regulates osteoclast differentiation by modulating RANKL-induced phosphatidylinositol 3-kinase/Akt and Erk pathways in association with signaling Adaptor DAP12. Kameda Y; Takahata M; Komatsu M; Mikuni S; Hatakeyama S; Shimizu T; Angata T; Kinjo M; Minami A; Iwasaki N J Bone Miner Res; 2013 Dec; 28(12):2463-75. PubMed ID: 23677868 [TBL] [Abstract][Full Text] [Related]
20. Antitumor agent cabozantinib decreases RANKL expression in osteoblastic cells and inhibits osteoclastogenesis and PTHrP-stimulated bone resorption. Stern PH; Alvares K J Cell Biochem; 2014 Nov; 115(11):2033-8. PubMed ID: 25042887 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]