BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 25792336)

  • 1. Structural evolution of an intermetallic Pd-Zn catalyst selective for propane dehydrogenation.
    Gallagher JR; Childers DJ; Zhao H; Winans RE; Meyer RJ; Miller JT
    Phys Chem Chem Phys; 2015 Nov; 17(42):28144-53. PubMed ID: 25792336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Pd-promoting reduction of zinc salt to PdZn alloy catalyst for the hydrogenation of nitrothioanisole.
    Cheng M; Zhang X; Guo Z; Lv P; Xiong R; Wang Z; Zhou Z; Zhang M
    J Colloid Interface Sci; 2021 Nov; 602():459-468. PubMed ID: 34144303
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ spectroscopy of complex surface reactions on supported Pd-Zn, Pd-Ga, and Pd(Pt)-Cu nanoparticles.
    Föttinger K; Rupprechter G
    Acc Chem Res; 2014 Oct; 47(10):3071-9. PubMed ID: 25247260
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formation and oxidation mechanisms of Pd-Zn nanoparticles on a ZnO supported Pd catalyst studied by in situ time-resolved QXAFS and DXAFS.
    Uemura Y; Inada Y; Niwa Y; Kimura M; Bando KK; Yagishita A; Iwasawa Y; Nomura M
    Phys Chem Chem Phys; 2012 Feb; 14(7):2152-8. PubMed ID: 21997731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Controlled Synthesis and Enhanced Catalytic Activity of Well-Defined Close-Contact Pd-ZnO Nanostructures.
    Li Q; Yu H; Li K; Yin H; Zhou S
    Langmuir; 2019 May; 35(19):6288-6296. PubMed ID: 31030518
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Revealing the dynamic structure of complex solid catalysts using modulated excitation X-ray diffraction.
    Ferri D; Newton MA; Di Michiel M; Chiarello GL; Yoon S; Lu Y; Andrieux J
    Angew Chem Int Ed Engl; 2014 Aug; 53(34):8890-4. PubMed ID: 24903631
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural trends in the dehydrogenation selectivity of palladium alloys.
    Purdy SC; Seemakurthi RR; Mitchell GM; Davidson M; Lauderback BA; Deshpande S; Wu Z; Wegener EC; Greeley J; Miller JT
    Chem Sci; 2020 May; 11(19):5066-5081. PubMed ID: 34122964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Microscopic models of PdZn alloy catalysts: structure and reactivity in methanol decomposition.
    Neyman KM; Lim KH; Chen ZX; Moskaleva LV; Bayer A; Reindl A; Borgmann D; Denecke R; Steinrück HP; Rösch N
    Phys Chem Chem Phys; 2007 Jul; 9(27):3470-82. PubMed ID: 17612715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation.
    Xu J; White T; Li P; He C; Yu J; Yuan W; Han YF
    J Am Chem Soc; 2010 Aug; 132(30):10398-406. PubMed ID: 20662517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Where does methanol lose hydrogen to trigger steam reforming? A revisit of methanol dehydrogenation on the PdZn alloy model obtained from kinetic Monte Carlo simulations.
    Cheng F; Chen ZX
    Phys Chem Chem Phys; 2016 Feb; 18(5):3936-43. PubMed ID: 26771029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CO(2)-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy.
    Rameshan C; Lorenz H; Mayr L; Penner S; Zemlyanov D; Arrigo R; Haevecker M; Blume R; Knop-Gericke A; Schlögl R; Klötzer B
    J Catal; 2012 Nov; 295(2-3):186-194. PubMed ID: 23226689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH
    Niu Y; Liu X; Wang Y; Zhou S; Lv Z; Zhang L; Shi W; Li Y; Zhang W; Su DS; Zhang B
    Angew Chem Int Ed Engl; 2019 Mar; 58(13):4232-4237. PubMed ID: 30650222
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Surface Hexagonal Pt
    Ye C; Peng M; Wang Y; Zhang N; Wang D; Jiao M; Miller JT
    ACS Appl Mater Interfaces; 2020 Jun; 12(23):25903-25909. PubMed ID: 32423194
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zn adsorption on Pd(111): ZnO and PdZn alloy formation.
    Gabasch H; Knop-Gericke A; Schlögl R; Penner S; Jenewein B; Hayek K; Klötzer B
    J Phys Chem B; 2006 Jun; 110(23):11391-8. PubMed ID: 16771411
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolution of intermetallic GaPd
    Fiordaliso EM; Sharafutdinov I; Carvalho HWP; Kehres J; Grunwaldt JD; Chorkendorff I; Damsgaard CD
    Sci Technol Adv Mater; 2019; 20(1):521-531. PubMed ID: 31191761
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zinc coverage dependent structure of PdZn surface alloy.
    He X; Huang Y; Chen ZX
    Phys Chem Chem Phys; 2011 Jan; 13(1):107-9. PubMed ID: 21082137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The CO oxidation mechanism and reactivity on PdZn alloys.
    Johnson RS; DeLaRiva A; Ashbacher V; Halevi B; Villanueva CJ; Smith GK; Lin S; Datye AK; Guo H
    Phys Chem Chem Phys; 2013 May; 15(20):7768-76. PubMed ID: 23598906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zn modification of the reactivity of Pd(111) toward methanol and formaldehyde.
    Jeroro E; Vohs JM
    J Am Chem Soc; 2008 Aug; 130(31):10199-207. PubMed ID: 18613679
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controllable Synthesis of Supported PdAu Nanoclusters and Their Electronic Structure-Dependent Catalytic Activity in Selective Dehydrogenation of Formic Acid.
    Ye W; Huang H; Zou W; Ge Y; Lu R; Zhang S
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34258-34265. PubMed ID: 34263596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces.
    Lim KH; Chen ZX; Neyman KM; Rösch N
    J Phys Chem B; 2006 Aug; 110(30):14890-7. PubMed ID: 16869600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.