These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
203 related articles for article (PubMed ID: 25792336)
1. Structural evolution of an intermetallic Pd-Zn catalyst selective for propane dehydrogenation. Gallagher JR; Childers DJ; Zhao H; Winans RE; Meyer RJ; Miller JT Phys Chem Chem Phys; 2015 Nov; 17(42):28144-53. PubMed ID: 25792336 [TBL] [Abstract][Full Text] [Related]
2. Pd-promoting reduction of zinc salt to PdZn alloy catalyst for the hydrogenation of nitrothioanisole. Cheng M; Zhang X; Guo Z; Lv P; Xiong R; Wang Z; Zhou Z; Zhang M J Colloid Interface Sci; 2021 Nov; 602():459-468. PubMed ID: 34144303 [TBL] [Abstract][Full Text] [Related]
3. In situ spectroscopy of complex surface reactions on supported Pd-Zn, Pd-Ga, and Pd(Pt)-Cu nanoparticles. Föttinger K; Rupprechter G Acc Chem Res; 2014 Oct; 47(10):3071-9. PubMed ID: 25247260 [TBL] [Abstract][Full Text] [Related]
4. Formation and oxidation mechanisms of Pd-Zn nanoparticles on a ZnO supported Pd catalyst studied by in situ time-resolved QXAFS and DXAFS. Uemura Y; Inada Y; Niwa Y; Kimura M; Bando KK; Yagishita A; Iwasawa Y; Nomura M Phys Chem Chem Phys; 2012 Feb; 14(7):2152-8. PubMed ID: 21997731 [TBL] [Abstract][Full Text] [Related]
5. Controlled Synthesis and Enhanced Catalytic Activity of Well-Defined Close-Contact Pd-ZnO Nanostructures. Li Q; Yu H; Li K; Yin H; Zhou S Langmuir; 2019 May; 35(19):6288-6296. PubMed ID: 31030518 [TBL] [Abstract][Full Text] [Related]
6. Revealing the dynamic structure of complex solid catalysts using modulated excitation X-ray diffraction. Ferri D; Newton MA; Di Michiel M; Chiarello GL; Yoon S; Lu Y; Andrieux J Angew Chem Int Ed Engl; 2014 Aug; 53(34):8890-4. PubMed ID: 24903631 [TBL] [Abstract][Full Text] [Related]
7. Structural trends in the dehydrogenation selectivity of palladium alloys. Purdy SC; Seemakurthi RR; Mitchell GM; Davidson M; Lauderback BA; Deshpande S; Wu Z; Wegener EC; Greeley J; Miller JT Chem Sci; 2020 May; 11(19):5066-5081. PubMed ID: 34122964 [TBL] [Abstract][Full Text] [Related]
9. Biphasic Pd-Au alloy catalyst for low-temperature CO oxidation. Xu J; White T; Li P; He C; Yu J; Yuan W; Han YF J Am Chem Soc; 2010 Aug; 132(30):10398-406. PubMed ID: 20662517 [TBL] [Abstract][Full Text] [Related]
10. Where does methanol lose hydrogen to trigger steam reforming? A revisit of methanol dehydrogenation on the PdZn alloy model obtained from kinetic Monte Carlo simulations. Cheng F; Chen ZX Phys Chem Chem Phys; 2016 Feb; 18(5):3936-43. PubMed ID: 26771029 [TBL] [Abstract][Full Text] [Related]
11. CO(2)-selective methanol steam reforming on In-doped Pd studied by in situ X-ray photoelectron spectroscopy. Rameshan C; Lorenz H; Mayr L; Penner S; Zemlyanov D; Arrigo R; Haevecker M; Blume R; Knop-Gericke A; Schlögl R; Klötzer B J Catal; 2012 Nov; 295(2-3):186-194. PubMed ID: 23226689 [TBL] [Abstract][Full Text] [Related]
12. Visualizing Formation of Intermetallic PdZn in a Palladium/Zinc Oxide Catalyst: Interfacial Fertilization by PdH Niu Y; Liu X; Wang Y; Zhou S; Lv Z; Zhang L; Shi W; Li Y; Zhang W; Su DS; Zhang B Angew Chem Int Ed Engl; 2019 Mar; 58(13):4232-4237. PubMed ID: 30650222 [TBL] [Abstract][Full Text] [Related]
13. Surface Hexagonal Pt Ye C; Peng M; Wang Y; Zhang N; Wang D; Jiao M; Miller JT ACS Appl Mater Interfaces; 2020 Jun; 12(23):25903-25909. PubMed ID: 32423194 [TBL] [Abstract][Full Text] [Related]
16. The CO oxidation mechanism and reactivity on PdZn alloys. Johnson RS; DeLaRiva A; Ashbacher V; Halevi B; Villanueva CJ; Smith GK; Lin S; Datye AK; Guo H Phys Chem Chem Phys; 2013 May; 15(20):7768-76. PubMed ID: 23598906 [TBL] [Abstract][Full Text] [Related]
17. Zn modification of the reactivity of Pd(111) toward methanol and formaldehyde. Jeroro E; Vohs JM J Am Chem Soc; 2008 Aug; 130(31):10199-207. PubMed ID: 18613679 [TBL] [Abstract][Full Text] [Related]
18. Controllable Synthesis of Supported PdAu Nanoclusters and Their Electronic Structure-Dependent Catalytic Activity in Selective Dehydrogenation of Formic Acid. Ye W; Huang H; Zou W; Ge Y; Lu R; Zhang S ACS Appl Mater Interfaces; 2021 Jul; 13(29):34258-34265. PubMed ID: 34263596 [TBL] [Abstract][Full Text] [Related]
19. Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces. Lim KH; Chen ZX; Neyman KM; Rösch N J Phys Chem B; 2006 Aug; 110(30):14890-7. PubMed ID: 16869600 [TBL] [Abstract][Full Text] [Related]
20. First-principles study towards the reactivity of the Pd(111) surface with low Zn deposition. Huang Y; He X; Chen ZX J Chem Phys; 2011 May; 134(18):184702. PubMed ID: 21568524 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]