These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25792412)

  • 1. An experimental and computational study of the hydrodynamics of high-velocity water microdrops for interproximal tooth cleaning.
    Rmaile A; Carugo D; Capretto L; Wharton JA; Thurner PJ; Aspiras M; Ward M; De Jager M; Stoodley P
    J Mech Behav Biomed Mater; 2015 Jun; 46():148-57. PubMed ID: 25792412
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Removal of interproximal dental biofilms by high-velocity water microdrops.
    Rmaile A; Carugo D; Capretto L; Aspiras M; De Jager M; Ward M; Stoodley P
    J Dent Res; 2014 Jan; 93(1):68-73. PubMed ID: 24170371
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational and Experimental Investigation of Biofilm Disruption Dynamics Induced by High-Velocity Gas Jet Impingement.
    Prades L; Fabbri S; Dorado AD; Gamisans X; Stoodley P; Picioreanu C
    mBio; 2020 Jan; 11(1):. PubMed ID: 31911489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Streptococcus mutans biofilm transient viscoelastic fluid behaviour during high-velocity microsprays.
    Fabbri S; Johnston DA; Rmaile A; Gottenbos B; De Jager M; Aspiras M; Starke EM; Ward MT; Stoodley P
    J Mech Behav Biomed Mater; 2016 Jun; 59():197-206. PubMed ID: 26771168
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of Dental Biofilms with an Ultrasonically Activated Water Stream.
    Howlin RP; Fabbri S; Offin DG; Symonds N; Kiang KS; Knee RJ; Yoganantham DC; Webb JS; Birkin PR; Leighton TG; Stoodley P
    J Dent Res; 2015 Sep; 94(9):1303-9. PubMed ID: 26056055
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of a laboratory model to assess the removal of biofilm from interproximal spaces by powered tooth brushing.
    Adams H; Winston MT; Heersink J; Buckingham-Meyer KA; Costerton JW; Stoodley P
    Am J Dent; 2002 Nov; 15 Spec No():12B-17B. PubMed ID: 12516676
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluid-driven interfacial instabilities and turbulence in bacterial biofilms.
    Fabbri S; Li J; Howlin RP; Rmaile A; Gottenbos B; De Jager M; Starke EM; Aspiras M; Ward MT; Cogan NG; Stoodley P
    Environ Microbiol; 2017 Nov; 19(11):4417-4431. PubMed ID: 28799690
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new in vivo interdental sampling method comparing a daily flossing regime versus a manual brush control.
    Bellamy P; Barlow A; Puri G; Wright KI; Mussett A; Zhou X
    J Clin Dent; 2004; 15(3):59-65. PubMed ID: 15688960
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow cell hydrodynamics and their effects on E. coli biofilm formation under different nutrient conditions and turbulent flow.
    Teodósio JS; Simões M; Melo LF; Mergulhão FJ
    Biofouling; 2011 Jan; 27(1):1-11. PubMed ID: 21082456
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the mechanical stability and surface detachment of mature Streptococcus mutans biofilms by applying a range of external shear forces.
    Hwang G; Klein MI; Koo H
    Biofouling; 2014 Oct; 30(9):1079-91. PubMed ID: 25355611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of CO2 laser irradiation on tooth enamel coated with biofilm.
    Cohen J; Featherstone JD; Le CQ; Steinberg D; Feuerstein O
    Lasers Surg Med; 2014 Mar; 46(3):216-23. PubMed ID: 24395736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic Changes in Biofilm Structures under Dynamic Flow Conditions.
    Wang S; Zhu H; Zheng G; Dong F; Liu C
    Appl Environ Microbiol; 2022 Nov; 88(22):e0107222. PubMed ID: 36300948
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficacy of straight versus angled interdental brushes on interproximal tooth cleaning: a randomized controlled trial.
    Jordan RA; Hong HM; Lucaciu A; Zimmer S
    Int J Dent Hyg; 2014 May; 12(2):152-7. PubMed ID: 23879344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between local hydrodynamics and algal community in epilithic biofilm.
    Graba M; Sauvage S; Moulin FY; Urrea G; Sabater S; Sanchez-Pérez JM
    Water Res; 2013 May; 47(7):2153-63. PubMed ID: 23466033
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis of fluid flow and wall shear stress patterns inside partially filled agitated culture well plates.
    Salek MM; Sattari P; Martinuzzi RJ
    Ann Biomed Eng; 2012 Mar; 40(3):707-28. PubMed ID: 22042624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Removal of Streptococcus mutans biofilm by bubbles.
    Parini MR; Eggett DL; Pitt WG
    J Clin Periodontol; 2005 Nov; 32(11):1151-6. PubMed ID: 16212576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical hydrodynamic force levels for efficient removal of oral biofilms in simulated interdental spaces.
    Hotic M; Ackermann M; Bopp J; Hofmann N; Karygianni L; Paqué PN
    Clin Oral Investig; 2024 May; 28(6):346. PubMed ID: 38819592
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical properties and failure of Streptococcus mutans biofilms, studied using a microindentation device.
    Cense AW; Peeters EA; Gottenbos B; Baaijens FP; Nuijs AM; van Dongen ME
    J Microbiol Methods; 2006 Dec; 67(3):463-72. PubMed ID: 16820233
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A model of fluid-biofilm interaction using a Burger material law.
    Towler BW; Cunningham A; Stoodley P; McKittrick L
    Biotechnol Bioeng; 2007 Feb; 96(2):259-71. PubMed ID: 16933369
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A study of the efficacy of ultrasonic waves in removing biofilms.
    Nishikawa T; Yoshida A; Khanal A; Habu M; Yoshioka I; Toyoshima K; Takehara T; Nishihara T; Tachibana K; Tominaga K
    Gerodontology; 2010 Sep; 27(3):199-206. PubMed ID: 20491951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.