BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 25792435)

  • 1. Comparison of different chelating agents to enhance reductive Cr(VI) removal by pyrite treatment procedure.
    Kantar C; Ari C; Keskin S
    Water Res; 2015 Jun; 76():66-75. PubMed ID: 25792435
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of low molecular weight organic acids on pyrite dissolution in aqueous systems: implications for catalytic chromium (VI) treatment.
    Kantar C
    Water Sci Technol; 2016; 74(1):99-109. PubMed ID: 27386987
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cr(VI) removal from aqueous systems using pyrite as the reducing agent: batch, spectroscopic and column experiments.
    Kantar C; Ari C; Keskin S; Dogaroglu ZG; Karadeniz A; Alten A
    J Contam Hydrol; 2015 Mar; 174():28-38. PubMed ID: 25644191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient removal of Cr(III)-organic complexes from water using UV/Fe(III) system: Negligible Cr(VI) accumulation and mechanism.
    Ye Y; Jiang Z; Xu Z; Zhang X; Wang D; Lv L; Pan B
    Water Res; 2017 Dec; 126():172-178. PubMed ID: 28946060
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Water Decontamination from Cr(III)-Organic Complexes Based on Pyrite/H
    Ye Y; Shan C; Zhang X; Liu H; Wang D; Lv L; Pan B
    Environ Sci Technol; 2018 Sep; 52(18):10657-10664. PubMed ID: 30130960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles.
    Wang T; Qian T; Huo L; Li Y; Zhao D
    Environ Pollut; 2019 Dec; 255(Pt 1):112992. PubMed ID: 31541830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advanced oxidation processes coupled with electrocoagulation for the exhaustive abatement of Cr-EDTA.
    Durante C; Cuscov M; Isse AA; Sandonà G; Gennaro A
    Water Res; 2011 Feb; 45(5):2122-30. PubMed ID: 21255817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanism and influence factors of chromium(VI) removal by sulfide-modified nanoscale zerovalent iron.
    Lv D; Zhou J; Cao Z; Xu J; Liu Y; Li Y; Yang K; Lou Z; Lou L; Xu X
    Chemosphere; 2019 Jun; 224():306-315. PubMed ID: 30844587
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of reactor type on Cr(VI) removal by zero-valent iron in the presence of pyrite: Batch versus sequential batch reactors.
    Oral O; Yigit A; Kantar C
    J Environ Manage; 2022 Oct; 320():115854. PubMed ID: 35961140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synergistic effect between sulfide mineral and acidophilic bacteria significantly promoted Cr(VI) reduction.
    Gan M; Li J; Sun S; Ding J; Zhu J; Liu X; Qiu G
    J Environ Manage; 2018 Aug; 219():84-94. PubMed ID: 29730593
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hexavalent chromium reduction with scrap iron in continuous-flow system Part 1: effect of feed solution pH.
    Gheju M; Iovi A; Balcu I
    J Hazard Mater; 2008 May; 153(1-2):655-62. PubMed ID: 17933460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hexavalent chromium remediation based on the synergistic effect between chemoautotrophic bacteria and sulfide minerals.
    Gan M; Gu C; Ding J; Zhu J; Liu X; Qiu G
    Ecotoxicol Environ Saf; 2019 May; 173():118-130. PubMed ID: 30771655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of N-hydroxyethyl-ethylenediamine-triacetic acid (HEDTA) on Cr(VI) reduction by Fe(II).
    Tzou YM; Wang MK; Loeppert RH
    Chemosphere; 2003 Jun; 51(9):993-1000. PubMed ID: 12697190
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of pyrite oxidation by hexavalent chromium: solution species and surface chemistry.
    Demoisson F; Mullet M; Humbert B
    J Colloid Interface Sci; 2007 Dec; 316(2):531-40. PubMed ID: 17880990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Decreasing dissolved oxygen enhances in situ curtailment of intermediate Cr(VI) during photo-oxidative decomplexation of Cr(III)-EDTA.
    Tian H; Wang X; Pan R; Qin J; Xu N; Huang X
    Environ Sci Pollut Res Int; 2023 May; 30(22):62733-62743. PubMed ID: 36949374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of Cr(VI) removal by magnetic greigite/biochar composites.
    Wang X; Xu J; Liu J; Liu J; Xia F; Wang C; Dahlgren RA; Liu W
    Sci Total Environ; 2020 Jan; 700():134414. PubMed ID: 31698277
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cr(VI)-contaminated groundwater remediation with simulated permeable reactive barrier (PRB) filled with natural pyrite as reactive material: Environmental factors and effectiveness.
    Liu Y; Mou H; Chen L; Mirza ZA; Liu L
    J Hazard Mater; 2015 Nov; 298():83-90. PubMed ID: 26026959
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chromium (VI) reduction in aqueous solutions by Fe3O4-stabilized Fe0 nanoparticles.
    Wu Y; Zhang J; Tong Y; Xu X
    J Hazard Mater; 2009 Dec; 172(2-3):1640-5. PubMed ID: 19740609
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cr(vi) uptake and reduction by biogenic iron (oxyhydr)oxides.
    Whitaker AH; Peña J; Amor M; Duckworth OW
    Environ Sci Process Impacts; 2018 Jul; 20(7):1056-1068. PubMed ID: 29922797
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Decomplexation of Cr(III)-EDTA and simultaneous abatement of total Cr by photo-oxidation: efficiency and in situ reduction of intermediate Cr(VI).
    Huang X; Wang X; Guan DX; Zhou H; Bei K; Zheng X; Jin Z; Zhang Y; Wang Q; Zhao M
    Environ Sci Pollut Res Int; 2019 Mar; 26(9):8516-8524. PubMed ID: 30761490
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.