These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

83 related articles for article (PubMed ID: 25792441)

  • 1. Improved feature-based prediction of SNPs in human cytochrome P450 enzymes.
    Li L; Xiong Y; Zhang ZY; Guo Q; Xu Q; Liow HH; Zhang YH; Wei DQ
    Interdiscip Sci; 2015 Mar; 7(1):65-77. PubMed ID: 25792441
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Statistical geometry based prediction of nonsynonymous SNP functional effects using random forest and neuro-fuzzy classifiers.
    Barenboim M; Masso M; Vaisman II; Jamison DC
    Proteins; 2008 Jun; 71(4):1930-9. PubMed ID: 18186470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutation probability of cytochrome P450 based on a genetic algorithm and support vector machine.
    Yao Y; Zhang T; Xiong Y; Li L; Huo J; Wei DQ
    Biotechnol J; 2011 Nov; 6(11):1367-76. PubMed ID: 21721128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SCYPPred: a web-based predictor of SNPs for human cytochrome P450.
    Li L; Wei DQ; Wang JF; Chou KC
    Protein Pept Lett; 2012 Jan; 19(1):57-61. PubMed ID: 21919859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of universal selectivity-determining positions in cytochrome P450 monooxygenases by systematic sequence-based literature mining.
    Gricman Ł; Vogel C; Pleiss J
    Proteins; 2015 Sep; 83(9):1593-603. PubMed ID: 26033392
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying novel oncogenes: a machine learning approach.
    Kumar A; Rajendran V; Sethumadhavan R; Purohit R
    Interdiscip Sci; 2013 Dec; 5(4):241-6. PubMed ID: 24402816
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of RNA-binding residues in proteins from primary sequence using an enriched random forest model with a novel hybrid feature.
    Ma X; Guo J; Wu J; Liu H; Yu J; Xie J; Sun X
    Proteins; 2011 Apr; 79(4):1230-9. PubMed ID: 21268114
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PSOFuzzySVM-TMH: identification of transmembrane helix segments using ensemble feature space by incorporated fuzzy support vector machine.
    Hayat M; Tahir M
    Mol Biosyst; 2015 Aug; 11(8):2255-62. PubMed ID: 26054033
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of genetic polymorphism and biochemical characterization of a functionally decreased variant in prostacyclin synthase gene (CYP8A1) in humans.
    Cho SA; Rohn-Glowacki KJ; Jarrar YB; Yi M; Kim WY; Shin JG; Lee SJ
    Arch Biochem Biophys; 2015 Mar; 569():10-8. PubMed ID: 25623425
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Analysis, identification and correction of some errors of model refseqs appeared in NCBI Human Gene Database by in silico cloning and experimental verification of novel human genes].
    Zhang DL; Ji L; Li YD
    Yi Chuan Xue Bao; 2004 May; 31(5):431-43. PubMed ID: 15478601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. FRKAS: knowledge acquisition using a fuzzy rule base approach to insight of DNA-binding domains/proteins.
    Huang HL; Chang FL; Ho SJ; Shu LS; Huang WL; Ho SY
    Protein Pept Lett; 2013 Mar; 20(3):299-308. PubMed ID: 22591472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accurate prediction of enzyme mutant activity based on a multibody statistical potential.
    Masso M; Vaisman II
    Bioinformatics; 2007 Dec; 23(23):3155-61. PubMed ID: 17977887
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Machine Learning-Based Method for Obesity Risk Evaluation Using Single-Nucleotide Polymorphisms Derived from Next-Generation Sequencing.
    Wang HY; Chang SC; Lin WY; Chen CH; Chiang SH; Huang KY; Chu BY; Lu JJ; Lee TY
    J Comput Biol; 2018 Dec; 25(12):1347-1360. PubMed ID: 30204480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioinformatics tools for discovery and functional analysis of single nucleotide polymorphisms.
    Li L; Wei D
    Adv Exp Med Biol; 2015; 827():287-310. PubMed ID: 25387971
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate in silico identification of protein succinylation sites using an iterative semi-supervised learning technique.
    Zhao X; Ning Q; Chai H; Ma Z
    J Theor Biol; 2015 Jun; 374():60-5. PubMed ID: 25843215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Can-Evo-Ens: Classifier stacking based evolutionary ensemble system for prediction of human breast cancer using amino acid sequences.
    Ali S; Majid A
    J Biomed Inform; 2015 Apr; 54():256-69. PubMed ID: 25617669
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improving the prediction of disease-related variants using protein three-dimensional structure.
    Capriotti E; Altman RB
    BMC Bioinformatics; 2011; 12 Suppl 4(Suppl 4):S3. PubMed ID: 21992054
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In silico discrimination of single nucleotide polymorphisms and pathological mutations in human gene promoter regions by means of local DNA sequence context and regularity.
    Khan IA; Mort M; Buckland PR; O'Donovan MC; Cooper DN; Chuzhanova NA
    In Silico Biol; 2006; 6(1-2):23-34. PubMed ID: 16789908
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A new disease-specific machine learning approach for the prediction of cancer-causing missense variants.
    Capriotti E; Altman RB
    Genomics; 2011 Oct; 98(4):310-7. PubMed ID: 21763417
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PrAS: Prediction of amidation sites using multiple feature extraction.
    Wang T; Zheng W; Wuyun Q; Wu Z; Ruan J; Hu G; Gao J
    Comput Biol Chem; 2017 Feb; 66():57-62. PubMed ID: 27918921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.