These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
304 related articles for article (PubMed ID: 25792481)
1. Plasticity of motor network and function in the absence of corticospinal projection. Han Q; Cao C; Ding Y; So KF; Wu W; Qu Y; Zhou L Exp Neurol; 2015 May; 267():194-208. PubMed ID: 25792481 [TBL] [Abstract][Full Text] [Related]
2. Spinal cord maturation and locomotion in mice with an isolated cortex. Han Q; Feng J; Qu Y; Ding Y; Wang M; So KF; Wu W; Zhou L Neuroscience; 2013 Dec; 253():235-44. PubMed ID: 24012835 [TBL] [Abstract][Full Text] [Related]
3. Congenital absence of corticospinal tract does not severely affect plastic changes of the developing postnatal spinal cord. Huang L; Xian Q; Shen N; Shi L; Qu Y; Zhou L Neuroscience; 2015 Aug; 301():338-50. PubMed ID: 26079333 [TBL] [Abstract][Full Text] [Related]
4. Reticulospinal plasticity after cervical spinal cord injury in the rat involves withdrawal of projections below the injury. Weishaupt N; Hurd C; Wei DZ; Fouad K Exp Neurol; 2013 Sep; 247():241-9. PubMed ID: 23684634 [TBL] [Abstract][Full Text] [Related]
5. Celsr3 Inactivation in the Brainstem Impairs Rubrospinal Tract Development and Mouse Behaviors in Motor Coordination and Mechanic-Induced Response. Chen B; Li F; Jia B; So KF; Wei JA; Liu Y; Qu Y; Zhou L Mol Neurobiol; 2022 Aug; 59(8):5179-5192. PubMed ID: 35678978 [TBL] [Abstract][Full Text] [Related]
6. Anatomical correlates of recovery in single pellet reaching in spinal cord injured rats. Hurd C; Weishaupt N; Fouad K Exp Neurol; 2013 Sep; 247():605-14. PubMed ID: 23470552 [TBL] [Abstract][Full Text] [Related]
7. Spinal cord plasticity in response to unilateral inhibition of the rat motor cortex during development: changes to gene expression, muscle afferents and the ipsilateral corticospinal projection. Clowry GJ; Davies BM; Upile NS; Gibson CL; Bradley PM Eur J Neurosci; 2004 Nov; 20(10):2555-66. PubMed ID: 15548199 [TBL] [Abstract][Full Text] [Related]
8. Plasticity of subcortical pathways promote recovery of skilled hand function in rats after corticospinal and rubrospinal tract injuries. García-Alías G; Truong K; Shah PK; Roy RR; Edgerton VR Exp Neurol; 2015 Apr; 266():112-9. PubMed ID: 25666586 [TBL] [Abstract][Full Text] [Related]
9. Plasticity of intact rubral projections mediates spontaneous recovery of function after corticospinal tract injury. Siegel CS; Fink KL; Strittmatter SM; Cafferty WB J Neurosci; 2015 Jan; 35(4):1443-57. PubMed ID: 25632122 [TBL] [Abstract][Full Text] [Related]
11. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats. Kanagal SG; Muir GD Exp Neurol; 2009 Mar; 216(1):193-206. PubMed ID: 19118552 [TBL] [Abstract][Full Text] [Related]
12. Differential vulnerability of propriospinal tract neurons to spinal cord contusion injury. Conta AC; Stelzner DJ J Comp Neurol; 2004 Nov; 479(4):347-59. PubMed ID: 15514981 [TBL] [Abstract][Full Text] [Related]
13. Motor Cortex Activity Organizes the Developing Rubrospinal System. Williams PT; Martin JH J Neurosci; 2015 Sep; 35(39):13363-74. PubMed ID: 26424884 [TBL] [Abstract][Full Text] [Related]
14. Nonspecific labeling limits the utility of Cre-Lox bred CST-YFP mice for studies of corticospinal tract regeneration. Willenberg R; Steward O J Comp Neurol; 2015 Dec; 523(18):2665-82. PubMed ID: 25976033 [TBL] [Abstract][Full Text] [Related]
15. Competition with Primary Sensory Afferents Drives Remodeling of Corticospinal Axons in Mature Spinal Motor Circuits. Jiang YQ; Zaaimi B; Martin JH J Neurosci; 2016 Jan; 36(1):193-203. PubMed ID: 26740661 [TBL] [Abstract][Full Text] [Related]
16. Re-Establishment of Cortical Motor Output Maps and Spontaneous Functional Recovery via Spared Dorsolaterally Projecting Corticospinal Neurons after Dorsal Column Spinal Cord Injury in Adult Mice. Hilton BJ; Anenberg E; Harrison TC; Boyd JD; Murphy TH; Tetzlaff W J Neurosci; 2016 Apr; 36(14):4080-92. PubMed ID: 27053214 [TBL] [Abstract][Full Text] [Related]
17. Intraspinal rewiring of the corticospinal tract requires target-derived brain-derived neurotrophic factor and compensates lost function after brain injury. Ueno M; Hayano Y; Nakagawa H; Yamashita T Brain; 2012 Apr; 135(Pt 4):1253-67. PubMed ID: 22436236 [TBL] [Abstract][Full Text] [Related]
18. Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke. Starkey ML; Bleul C; Zörner B; Lindau NT; Mueggler T; Rudin M; Schwab ME Brain; 2012 Nov; 135(Pt 11):3265-81. PubMed ID: 23169918 [TBL] [Abstract][Full Text] [Related]
19. Corticospinal circuit plasticity in motor rehabilitation from spinal cord injury. Serradj N; Agger SF; Hollis ER Neurosci Lett; 2017 Jun; 652():94-104. PubMed ID: 27939980 [TBL] [Abstract][Full Text] [Related]
20. Ascending sensory, but not other long-tract axons, regenerate into the connective tissue matrix that forms at the site of a spinal cord injury in mice. Inman DM; Steward O J Comp Neurol; 2003 Aug; 462(4):431-49. PubMed ID: 12811811 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]