BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 25792528)

  • 1. Facilitation of epileptic activity during sleep is mediated by high amplitude slow waves.
    Frauscher B; von Ellenrieder N; Ferrari-Marinho T; Avoli M; Dubeau F; Gotman J
    Brain; 2015 Jun; 138(Pt 6):1629-41. PubMed ID: 25792528
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Epileptic interictal discharges are more frequent during NREM slow wave downstates.
    Ujma PP; Halász P; Kelemen A; Fabó D; Erőss L
    Neurosci Lett; 2017 Sep; 658():37-42. PubMed ID: 28811195
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Slow-wave activity preceding the onset of 10-15-Hz sleep spindles and 5-9-Hz oscillations in electroencephalograms in rats with and without absence seizures.
    Sitnikova E; Grubov V; Hramov AE
    J Sleep Res; 2020 Dec; 29(6):e12927. PubMed ID: 31578791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction with slow waves during sleep improves discrimination of physiologic and pathologic high-frequency oscillations (80-500 Hz).
    von Ellenrieder N; Frauscher B; Dubeau F; Gotman J
    Epilepsia; 2016 Jun; 57(6):869-78. PubMed ID: 27184021
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of γ and spindle-range power by slow oscillations in scalp sleep EEG of children.
    Piantoni G; Astill RG; Raymann RJ; Vis JC; Coppens JE; Van Someren EJ
    Int J Psychophysiol; 2013 Aug; 89(2):252-8. PubMed ID: 23403325
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bimodal coupling of ripples and slower oscillations during sleep in patients with focal epilepsy.
    Song I; Orosz I; Chervoneva I; Waldman ZJ; Fried I; Wu C; Sharan A; Salamon N; Gorniak R; Dewar S; Bragin A; Engel J; Sperling MR; Staba R; Weiss SA
    Epilepsia; 2017 Nov; 58(11):1972-1984. PubMed ID: 28948998
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal coupling of parahippocampal ripples, sleep spindles and slow oscillations in humans.
    Clemens Z; Mölle M; Eross L; Barsi P; Halász P; Born J
    Brain; 2007 Nov; 130(Pt 11):2868-78. PubMed ID: 17615093
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physiological Ripples Associated with Sleep Spindles Differ in Waveform Morphology from Epileptic Ripples.
    Bruder JC; Dümpelmann M; Piza DL; Mader M; Schulze-Bonhage A; Jacobs-Le Van J
    Int J Neural Syst; 2017 Nov; 27(7):1750011. PubMed ID: 28043201
    [TBL] [Abstract][Full Text] [Related]  

  • 9. EEG desynchronization during phasic REM sleep suppresses interictal epileptic activity in humans.
    Frauscher B; von Ellenrieder N; Dubeau F; Gotman J
    Epilepsia; 2016 Jun; 57(6):879-88. PubMed ID: 27112123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modulation index predicts the effect of ethosuximide on developmental and epileptic encephalopathy with spike-and-wave activation in sleep.
    Shibata T; Tsuchiya H; Akiyama M; Akiyama T; Kobayashi K
    Epilepsy Res; 2024 May; 202():107359. PubMed ID: 38582072
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sleep slow-wave oscillations trigger seizures in a genetic epilepsy model of Dravet syndrome.
    Catron MA; Howe RK; Besing GK; St John EK; Potesta CV; Gallagher MJ; Macdonald RL; Zhou C
    Brain Commun; 2023; 5(1):fcac332. PubMed ID: 36632186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Slow oscillations in human non-rapid eye movement sleep electroencephalogram: effects of increased sleep pressure.
    Bersagliere A; Achermann P
    J Sleep Res; 2010 Mar; 19(1 Pt 2):228-37. PubMed ID: 19845847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A region-specific modulation of sleep slow waves on interictal epilepsy markers in focal epilepsy.
    Chen C; Wang Y; Ye L; Xu J; Ming W; Liu X; Hu L; Ye H; Xu C; Wang Y; Wang Z; Ding Y; Zhu J; Ding M; Chen Z; Wang S
    Epilepsia; 2023 Apr; 64(4):973-985. PubMed ID: 36695000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Continuous spike-waves during slow-wave sleep in a mouse model of focal cortical dysplasia.
    Sun QQ; Zhou C; Yang W; Petrus D
    Epilepsia; 2016 Oct; 57(10):1581-1593. PubMed ID: 27527919
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Physiological and pathological high-frequency oscillations have distinct sleep-homeostatic properties.
    von Ellenrieder N; Dubeau F; Gotman J; Frauscher B
    Neuroimage Clin; 2017; 14():566-573. PubMed ID: 28337411
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Medium-voltage 5-9-Hz oscillations give rise to spike-and-wave discharges in a genetic model of absence epilepsy: in vivo dual extracellular recording of thalamic relay and reticular neurons.
    Pinault D; Vergnes M; Marescaux C
    Neuroscience; 2001; 105(1):181-201. PubMed ID: 11483311
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spike-related haemodynamic responses overlap with high frequency oscillations in patients with focal epilepsy.
    González Otárula KA; Khoo HM; von Ellenrieder N; Hall JA; Dubeau F; Gotman J
    Brain; 2018 Mar; 141(3):731-743. PubMed ID: 29360943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Age-Dependency of Location of Epileptic Foci in "Continuous Spike-and-Waves during Sleep": A Parallel to the Posterior-Anterior Trajectory of Slow Wave Activity.
    Bölsterli Heinzle BK; Bast T; Critelli H; Huber R; Schmitt B
    Neuropediatrics; 2017 Feb; 48(1):36-41. PubMed ID: 27880966
    [TBL] [Abstract][Full Text] [Related]  

  • 19. How do children fall asleep? A high-density EEG study of slow waves in the transition from wake to sleep.
    Spiess M; Bernardi G; Kurth S; Ringli M; Wehrle FM; Jenni OG; Huber R; Siclari F
    Neuroimage; 2018 Sep; 178():23-35. PubMed ID: 29758338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Benign epilepsy with centrotemporal spikes: Is there a thalamocortical network dysfunction present?
    Şanlıdağ B; Köken ÖY; Temel EÜ; Arhan E; Aydın K; Serdaroğlu A
    Seizure; 2020 Jul; 79():44-48. PubMed ID: 32416566
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.