These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25792555)

  • 1. Solubis: optimize your protein.
    De Baets G; Van Durme J; van der Kant R; Schymkowitz J; Rousseau F
    Bioinformatics; 2015 Aug; 31(15):2580-2. PubMed ID: 25792555
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solubis: a webserver to reduce protein aggregation through mutation.
    Van Durme J; De Baets G; Van Der Kant R; Ramakers M; Ganesan A; Wilkinson H; Gallardo R; Rousseau F; Schymkowitz J
    Protein Eng Des Sel; 2016 Aug; 29(8):285-9. PubMed ID: 27284085
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the role of aggregation prone regions in protein evolution, stability, and enzymatic catalysis: insights from diverse analyses.
    Buck PM; Kumar S; Singh SK
    PLoS Comput Biol; 2013; 9(10):e1003291. PubMed ID: 24146608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. SolubiS: Optimizing Protein Solubility by Minimal Point Mutations.
    van der Kant R; van Durme J; Rousseau F; Schymkowitz J
    Methods Mol Biol; 2019; 1873():317-333. PubMed ID: 30341620
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting aggregation-prone sequences in proteins.
    De Baets G; Schymkowitz J; Rousseau F
    Essays Biochem; 2014; 56():41-52. PubMed ID: 25131585
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Aggregation prone regions and gatekeeping residues in protein sequences.
    Beerten J; Schymkowitz J; Rousseau F
    Curr Top Med Chem; 2012; 12(22):2470-8. PubMed ID: 23339301
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PoPMuSiC, rationally designing point mutations in protein structures.
    Kwasigroch JM; Gilis D; Dehouck Y; Rooman M
    Bioinformatics; 2002 Dec; 18(12):1701-2. PubMed ID: 12490462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. How do thermophilic proteins resist aggregation?
    Thangakani AM; Kumar S; Velmurugan D; Gromiha MS
    Proteins; 2012 Apr; 80(4):1003-15. PubMed ID: 22389104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Driving Forces for Nonnative Protein Aggregation and Approaches to Predict Aggregation-Prone Regions.
    Meric G; Robinson AS; Roberts CJ
    Annu Rev Chem Biomol Eng; 2017 Jun; 8():139-159. PubMed ID: 28592179
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rational design of mutations that change the aggregation rate of a protein while maintaining its native structure and stability.
    Camilloni C; Sala BM; Sormanni P; Porcari R; Corazza A; De Rosa M; Zanini S; Barbiroli A; Esposito G; Bolognesi M; Bellotti V; Vendruscolo M; Ricagno S
    Sci Rep; 2016 May; 6():25559. PubMed ID: 27150430
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aggregation prone regions in human proteome: Insights from large-scale data analyses.
    Prabakaran R; Goel D; Kumar S; Gromiha MM
    Proteins; 2017 Jun; 85(6):1099-1118. PubMed ID: 28257595
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutations and off-pathway aggregation of proteins.
    Wetzel R
    Trends Biotechnol; 1994 May; 12(5):193-8. PubMed ID: 7764903
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Topology-based potentials and the study of the competition between protein folding and aggregation.
    Prieto L; Rey A
    J Chem Phys; 2009 Mar; 130(11):115101. PubMed ID: 19317567
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Defective protein folding and aggregation as the basis of neurodegenerative diseases: the darker aspect of proteins.
    Naeem A; Fazili NA
    Cell Biochem Biophys; 2011 Nov; 61(2):237-50. PubMed ID: 21573992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of aggregation-prone regions in structured proteins.
    Tartaglia GG; Pawar AP; Campioni S; Dobson CM; Chiti F; Vendruscolo M
    J Mol Biol; 2008 Jul; 380(2):425-36. PubMed ID: 18514226
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of single-point sequence alterations on the aggregation propensity of a model protein.
    Bratko D; Cellmer T; Prausnitz JM; Blanch HW
    J Am Chem Soc; 2006 Feb; 128(5):1683-91. PubMed ID: 16448142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational design and biophysical characterization of aggregation-resistant point mutations for γD crystallin illustrate a balance of conformational stability and intrinsic aggregation propensity.
    Sahin E; Jordan JL; Spatara ML; Naranjo A; Costanzo JA; Weiss WF; Robinson AS; Fernandez EJ; Roberts CJ
    Biochemistry; 2011 Feb; 50(5):628-39. PubMed ID: 21184609
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-native local interactions in protein folding and stability: introducing a helical tendency in the all beta-sheet alpha-spectrin SH3 domain.
    Prieto J; Wilmans M; Jiménez MA; Rico M; Serrano L
    J Mol Biol; 1997 May; 268(4):760-78. PubMed ID: 9175859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of site-directed point mutations in protein misfolding.
    Baruah A; Biswas P
    Phys Chem Chem Phys; 2014 Jul; 16(27):13964-73. PubMed ID: 24898496
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of local and nonlocal interactions in folding and misfolding of globular proteins.
    Kumar A; Baruah A; Biswas P
    J Chem Phys; 2017 Feb; 146(6):065102. PubMed ID: 28201889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.