These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 25792555)

  • 61. Truncation of a β-barrel scaffold dissociates intrinsic stability from its propensity to aggregation.
    Curto LM; Angelani CR; Caramelo JJ; Delfino JM
    Biophys J; 2012 Nov; 103(9):1929-39. PubMed ID: 23199921
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Investigating protein variants using structural calculation techniques.
    Carlsson J; Persson B
    Methods Mol Biol; 2012; 857():313-30. PubMed ID: 22323228
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Pairwise covariance adds little to secondary structure prediction but improves the prediction of non-canonical local structure.
    Bystroff C; Webb-Robertson BJ
    BMC Bioinformatics; 2008 Oct; 9():429. PubMed ID: 18847485
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Reliable and robust detection of coevolving protein residues.
    Jeong CS; Kim D
    Protein Eng Des Sel; 2012 Nov; 25(11):705-13. PubMed ID: 23077274
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Protein homeostasis disorders of key enzymes of amino acids metabolism: mutation-induced protein kinetic destabilization and new therapeutic strategies.
    Pey AL
    Amino Acids; 2013 Dec; 45(6):1331-41. PubMed ID: 24178766
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant.
    Ignatova Z; Gierasch LM
    Proc Natl Acad Sci U S A; 2006 Sep; 103(36):13357-61. PubMed ID: 16899544
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Protein folding and misfolding.
    Dobson CM
    Nature; 2003 Dec; 426(6968):884-90. PubMed ID: 14685248
    [TBL] [Abstract][Full Text] [Related]  

  • 68. I-Mutant2.0: predicting stability changes upon mutation from the protein sequence or structure.
    Capriotti E; Fariselli P; Casadio R
    Nucleic Acids Res; 2005 Jul; 33(Web Server issue):W306-10. PubMed ID: 15980478
    [TBL] [Abstract][Full Text] [Related]  

  • 69. In vitro evolved non-aggregating and thermostable lipase: structural and thermodynamic investigation.
    Kamal MZ; Ahmad S; Molugu TR; Vijayalakshmi A; Deshmukh MV; Sankaranarayanan R; Rao NM
    J Mol Biol; 2011 Oct; 413(3):726-41. PubMed ID: 21925508
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Derivation of a solubility condition for proteins from an analysis of the competition between folding and aggregation.
    Pechmann S; Vendruscolo M
    Mol Biosyst; 2010 Dec; 6(12):2490-7. PubMed ID: 20957252
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A neural-network-based method for predicting protein stability changes upon single point mutations.
    Capriotti E; Fariselli P; Casadio R
    Bioinformatics; 2004 Aug; 20 Suppl 1():i63-8. PubMed ID: 15262782
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Stability of structurally entangled protein dimers.
    Zhao Y; Cieplak M
    Proteins; 2018 Sep; 86(9):945-955. PubMed ID: 29790597
    [TBL] [Abstract][Full Text] [Related]  

  • 73. A protein evolution model with independent sites that reproduces site-specific amino acid distributions from the Protein Data Bank.
    Bastolla U; Porto M; Roman HE; Vendruscolo M
    BMC Evol Biol; 2006 May; 6():43. PubMed ID: 16737532
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Computational Assessment of Bacterial Protein Structures Indicates a Selection Against Aggregation.
    Carija A; Pinheiro F; Iglesias V; Ventura S
    Cells; 2019 Aug; 8(8):. PubMed ID: 31398930
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Analyses of simulations of three-dimensional lattice proteins in comparison with a simplified statistical mechanical model of protein folding.
    Abe H; Wako H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 1):011913. PubMed ID: 16907133
    [TBL] [Abstract][Full Text] [Related]  

  • 76. An evolutionary trade-off between protein turnover rate and protein aggregation favors a higher aggregation propensity in fast degrading proteins.
    De Baets G; Reumers J; Delgado Blanco J; Dopazo J; Schymkowitz J; Rousseau F
    PLoS Comput Biol; 2011 Jun; 7(6):e1002090. PubMed ID: 21731483
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Structural and thermodynamic investigations on the aggregation and folding of acylphosphatase by molecular dynamics simulations and solvation free energy analysis.
    Chong SH; Lee C; Kang G; Park M; Ham S
    J Am Chem Soc; 2011 May; 133(18):7075-83. PubMed ID: 21500781
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Applications of Protein Thermodynamic Database for Understanding Protein Mutant Stability and Designing Stable Mutants.
    Gromiha MM; Anoosha P; Huang LT
    Methods Mol Biol; 2016; 1415():71-89. PubMed ID: 27115628
    [TBL] [Abstract][Full Text] [Related]  

  • 79. SODA: prediction of protein solubility from disorder and aggregation propensity.
    Paladin L; Piovesan D; Tosatto SCE
    Nucleic Acids Res; 2017 Jul; 45(W1):W236-W240. PubMed ID: 28505312
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Predicting protein stability changes from sequences using support vector machines.
    Capriotti E; Fariselli P; Calabrese R; Casadio R
    Bioinformatics; 2005 Sep; 21 Suppl 2():ii54-8. PubMed ID: 16204125
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.