These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
214 related articles for article (PubMed ID: 25793008)
1. Remote, aerial phenotyping of maize traits with a mobile multi-sensor approach. Liebisch F; Kirchgessner N; Schneider D; Walter A; Hund A Plant Methods; 2015; 11():9. PubMed ID: 25793008 [TBL] [Abstract][Full Text] [Related]
2. Phenotyping of Plant Biomass and Performance Traits Using Remote Sensing Techniques in Pea ( Quirós Vargas JJ; Zhang C; Smitchger JA; McGee RJ; Sankaran S Sensors (Basel); 2019 Apr; 19(9):. PubMed ID: 31052251 [TBL] [Abstract][Full Text] [Related]
3. Clustering Field-Based Maize Phenotyping of Plant-Height Growth and Canopy Spectral Dynamics Using a UAV Remote-Sensing Approach. Han L; Yang G; Yang H; Xu B; Li Z; Yang X Front Plant Sci; 2018; 9():1638. PubMed ID: 30483291 [TBL] [Abstract][Full Text] [Related]
4. Comparative Performance of Ground vs. Aerially Assessed RGB and Multispectral Indices for Early-Growth Evaluation of Maize Performance under Phosphorus Fertilization. Gracia-Romero A; Kefauver SC; Vergara-Díaz O; Zaman-Allah MA; Prasanna BM; Cairns JE; Araus JL Front Plant Sci; 2017; 8():2004. PubMed ID: 29230230 [TBL] [Abstract][Full Text] [Related]
5. Machine learning for high-throughput field phenotyping and image processing provides insight into the association of above and below-ground traits in cassava ( Selvaraj MG; Valderrama M; Guzman D; Valencia M; Ruiz H; Acharjee A Plant Methods; 2020; 16():87. PubMed ID: 32549903 [TBL] [Abstract][Full Text] [Related]
6. [Research on maize multispectral image accurate segmentation and chlorophyll index estimation]. Wu Q; Sun H; Li MZ; Song YY; Zhang YE Guang Pu Xue Yu Guang Pu Fen Xi; 2015 Jan; 35(1):178-83. PubMed ID: 25993844 [TBL] [Abstract][Full Text] [Related]
8. Multi-Spectral Imaging from an Unmanned Aerial Vehicle Enables the Assessment of Seasonal Leaf Area Dynamics of Sorghum Breeding Lines. Potgieter AB; George-Jaeggli B; Chapman SC; Laws K; Suárez Cadavid LA; Wixted J; Watson J; Eldridge M; Jordan DR; Hammer GL Front Plant Sci; 2017; 8():1532. PubMed ID: 28951735 [TBL] [Abstract][Full Text] [Related]
9. A Novel Remote Sensing Approach for Prediction of Maize Yield Under Different Conditions of Nitrogen Fertilization. Vergara-Díaz O; Zaman-Allah MA; Masuka B; Hornero A; Zarco-Tejada P; Prasanna BM; Cairns JE; Araus JL Front Plant Sci; 2016; 7():666. PubMed ID: 27242867 [TBL] [Abstract][Full Text] [Related]
10. Row selection in remote sensing from four-row plots of maize and sorghum based on repeatability and predictive modeling. Tolley SA; Carpenter N; Crawford MM; Delp EJ; Habib A; Tuinstra MR Front Plant Sci; 2023; 14():1202536. PubMed ID: 37409309 [TBL] [Abstract][Full Text] [Related]
11. Improved Accuracy of High-Throughput Phenotyping From Unmanned Aerial Systems by Extracting Traits Directly From Orthorectified Images. Wang X; Silva P; Bello NM; Singh D; Evers B; Mondal S; Espinosa FP; Singh RP; Poland J Front Plant Sci; 2020; 11():587093. PubMed ID: 33193537 [TBL] [Abstract][Full Text] [Related]
12. Integration of Radiometric Ground-Based Data and High-Resolution QuickBird Imagery with Multivariate Modeling to Estimate Maize Traits in the Nile Delta of Egypt. Elmetwalli AH; Tyler AN; Moghanm FS; Alamri SAM; Eid EM; Elsayed S Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34204099 [TBL] [Abstract][Full Text] [Related]
13. Forage Height and Above-Ground Biomass Estimation by Comparing UAV-Based Multispectral and RGB Imagery. Wang H; Singh KD; Poudel HP; Natarajan M; Ravichandran P; Eisenreich B Sensors (Basel); 2024 Sep; 24(17):. PubMed ID: 39275705 [TBL] [Abstract][Full Text] [Related]
14. Growth Monitoring and Yield Estimation of Maize Plant Using Unmanned Aerial Vehicle (UAV) in a Hilly Region. Sapkota S; Paudyal DR Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420599 [TBL] [Abstract][Full Text] [Related]
15. LAI estimation through remotely sensed NDVI following hail defoliation in maize ( Furlanetto J; Dal Ferro N; Longo M; Sartori L; Polese R; Caceffo D; Nicoli L; Morari F Precis Agric; 2023 Feb; ():1-25. PubMed ID: 37363793 [TBL] [Abstract][Full Text] [Related]
16. Genetic dissection of seasonal vegetation index dynamics in maize through aerial based high-throughput phenotyping. Wang J; Li X; Guo T; Dzievit MJ; Yu X; Liu P; Price KP; Yu J Plant Genome; 2021 Nov; 14(3):e20155. PubMed ID: 34596348 [TBL] [Abstract][Full Text] [Related]
17. Phenotyping Conservation Agriculture Management Effects on Ground and Aerial Remote Sensing Assessments of Maize Hybrids Performance in Zimbabwe. Gracia-Romero A; Vergara-Díaz O; Thierfelder C; Cairns JE; Kefauver SC; Araus JL Remote Sens (Basel); 2018; 10(2):349. PubMed ID: 32704486 [TBL] [Abstract][Full Text] [Related]
18. Spectral reflectance from a soybean canopy exposed to elevated CO2 and O3. Gray SB; Dermody O; DeLucia EH J Exp Bot; 2010 Oct; 61(15):4413-22. PubMed ID: 20696654 [TBL] [Abstract][Full Text] [Related]
19. Assessment of Multi-Image Unmanned Aerial Vehicle Based High-Throughput Field Phenotyping of Canopy Temperature. Perich G; Hund A; Anderegg J; Roth L; Boer MP; Walter A; Liebisch F; Aasen H Front Plant Sci; 2020; 11():150. PubMed ID: 32158459 [TBL] [Abstract][Full Text] [Related]
20. Unmanned aerial platform-based multi-spectral imaging for field phenotyping of maize. Zaman-Allah M; Vergara O; Araus JL; Tarekegne A; Magorokosho C; Zarco-Tejada PJ; Hornero A; Albà AH; Das B; Craufurd P; Olsen M; Prasanna BM; Cairns J Plant Methods; 2015; 11():35. PubMed ID: 26106438 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]