These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25793478)

  • 1. R0 for vector-borne diseases: impact of the assumption for the duration of the extrinsic incubation period.
    Hartemink N; Cianci D; Reiter P
    Vector Borne Zoonotic Dis; 2015 Mar; 15(3):215-7. PubMed ID: 25793478
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global dynamics of a vector-host epidemic model with age of infection.
    Dang YX; Qiu ZP; Li XZ; Martcheva M
    Math Biosci Eng; 2017 Oct/Dec 1; 14(5-6):1159-1186. PubMed ID: 29161855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Interaction between Vector Life History and Short Vector Life in Vector-Borne Disease Transmission and Control.
    Brand SP; Rock KS; Keeling MJ
    PLoS Comput Biol; 2016 Apr; 12(4):e1004837. PubMed ID: 27128163
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of pathogen-resistant vectors on the transmission dynamics of a vector-borne disease.
    Arino J; Bowman C; Gumel A; Portet S
    J Biol Dyn; 2007 Oct; 1(4):320-46. PubMed ID: 22876820
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vector-borne diseases models with residence times - A Lagrangian perspective.
    Bichara D; Castillo-Chavez C
    Math Biosci; 2016 Nov; 281():128-138. PubMed ID: 27622812
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The control of vector-borne disease epidemics.
    Hosack GR; Rossignol PA; van den Driessche P
    J Theor Biol; 2008 Nov; 255(1):16-25. PubMed ID: 18706917
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the impact of global warming on vector-borne infections.
    Massad E; Coutinho FA; Lopez LF; da Silva DR
    Phys Life Rev; 2011 Jun; 8(2):169-99. PubMed ID: 21257353
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An age-structured vector-borne disease model with horizontal transmission in the host.
    Wang X; Chen Y
    Math Biosci Eng; 2018 Oct; 15(5):1099-1116. PubMed ID: 30380301
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Robustness of the reproductive number estimates in vector-borne disease systems.
    Tennant W; Recker M
    PLoS Negl Trop Dis; 2018 Dec; 12(12):e0006999. PubMed ID: 30557351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analytic calculation of finite-population reproductive numbers for direct- and vector-transmitted diseases with homogeneous mixing.
    Keegan L; Dushoff J
    Bull Math Biol; 2014 May; 76(5):1143-54. PubMed ID: 24756856
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dynamical analysis of a mean-field vector-borne diseases model on complex networks: An edge based compartmental approach.
    Wang X; Yang J
    Chaos; 2020 Jan; 30(1):013103. PubMed ID: 32013474
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Community-level analysis of risk of vector-borne disease.
    Zavaleta JO; Rossignol PA
    Trans R Soc Trop Med Hyg; 2004 Oct; 98(10):610-8. PubMed ID: 15289098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Global properties of vector-host disease models with time delays.
    Cai LM; Li XZ; Fang B; Ruan S
    J Math Biol; 2017 May; 74(6):1397-1423. PubMed ID: 27659303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From the bench to modeling--R0 at the interface between empirical and theoretical approaches in epidemiology of environmentally transmitted infectious diseases.
    Ivanek R; Lahodny G
    Prev Vet Med; 2015 Feb; 118(2-3):196-206. PubMed ID: 25441048
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transmission parameters of vector-borne infections.
    Desenclos JC
    Med Mal Infect; 2011 Nov; 41(11):588-93. PubMed ID: 21993137
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Outbreak properties of epidemic models: the roles of temporal forcing and stochasticity on pathogen invasion dynamics.
    Parham PE; Michael E
    J Theor Biol; 2011 Feb; 271(1):1-9. PubMed ID: 21094169
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Global properties of SIR and SEIR epidemic models with multiple parallel infectious stages.
    Korobeinikov A
    Bull Math Biol; 2009 Jan; 71(1):75-83. PubMed ID: 18769976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of global warming on vector-borne diseases: Comment on "Modeling the impact of global warming on vector-borne" infections by E. Massad et al.
    Aguiar M
    Phys Life Rev; 2011 Jun; 8(2):202-3; discussion 206-7. PubMed ID: 21376676
    [No Abstract]   [Full Text] [Related]  

  • 19. Microclimatic temperatures increase the potential for vector-borne disease transmission in the Scandinavian climate.
    Haider N; Kirkeby C; Kristensen B; Kjær LJ; Sørensen JH; Bødker R
    Sci Rep; 2017 Aug; 7(1):8175. PubMed ID: 28811576
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Climate change and vector-borne infections: Comment on "Modeling the impact of global warming on vector-borne infections" by Eduardo Massad, Francisco Antonio Bezerra Coutinho, Luiz Fernandes Lopez and Daniel Rodrigues da Silva.
    Rocklöv J; Wilder-Smith A
    Phys Life Rev; 2011 Jun; 8(2):204-5; discussion 206-7. PubMed ID: 21546326
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.