These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 25793478)

  • 21. The risk of incomplete personal protection coverage in vector-borne disease.
    Miller E; Dushoff J; Huppert A
    J R Soc Interface; 2016 Feb; 13(115):20150666. PubMed ID: 26911486
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Competitive exclusion in a vector-host epidemic model with distributed delay(†).
    Cai LM; Martcheva M; Li XZ
    J Biol Dyn; 2013; 7 Suppl 1(Suppl 1):47-67. PubMed ID: 23421610
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Epidemic dynamics of a vector-borne disease on a villages-and-city star network with commuters.
    Mpolya EA; Yashima K; Ohtsuki H; Sasaki A
    J Theor Biol; 2014 Feb; 343():120-6. PubMed ID: 24321227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A hypothesis for explaining single outbreaks (like the Black Death in European cities) of vector-borne infections.
    Burattini MN; Coutinho FA; Massad E
    Med Hypotheses; 2009 Jul; 73(1):110-4. PubMed ID: 19264416
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Climate change and vector-borne diseases.
    Rogers DJ; Randolph SE
    Adv Parasitol; 2006; 62():345-81. PubMed ID: 16647975
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The basic reproduction number of vector-borne plant virus epidemics.
    Van den Bosch F; Jeger MJ
    Virus Res; 2017 Sep; 241():196-202. PubMed ID: 28642061
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Global warming and socioeconomic conditions: Comment on "Modeling the impact of global warming on vector-borne infections" by Eduardo Massad, Francisco Antonio Bezerra Coutinho, Luiz Fernandes Lopez and Daniel Rodrigues da Silva.
    Yang HM
    Phys Life Rev; 2011 Jun; 8(2):200-1; discussion 206-7. PubMed ID: 21376677
    [No Abstract]   [Full Text] [Related]  

  • 28. Epidemic dynamics on semi-directed complex networks.
    Zhang X; Sun GQ; Zhu YX; Ma J; Jin Z
    Math Biosci; 2013 Dec; 246(2):242-51. PubMed ID: 24140877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The basic reproduction number and the probability of extinction for a dynamic epidemic model.
    Neal P
    Math Biosci; 2012 Mar; 236(1):31-5. PubMed ID: 22269870
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transmission dynamics for vector-borne diseases in a patchy environment.
    Xiao Y; Zou X
    J Math Biol; 2014 Jul; 69(1):113-46. PubMed ID: 23732558
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Invasion of infectious diseases in finite homogeneous populations.
    Ross JV
    J Theor Biol; 2011 Nov; 289():83-9. PubMed ID: 21903101
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Uncertainties regarding dengue modeling in Rio de Janeiro, Brazil.
    Luz PM; Codeço CT; Massad E; Struchiner CJ
    Mem Inst Oswaldo Cruz; 2003 Oct; 98(7):871-8. PubMed ID: 14765541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Climate change and vector-borne diseases of humans.
    Parham PE; Waldock J; Christophides GK; Michael E
    Philos Trans R Soc Lond B Biol Sci; 2015 Apr; 370(1665):. PubMed ID: 25688025
    [No Abstract]   [Full Text] [Related]  

  • 34. Winter is coming: Pathogen emergence in seasonal environments.
    Carmona P; Gandon S
    PLoS Comput Biol; 2020 Jul; 16(7):e1007954. PubMed ID: 32628658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Global analysis of a delayed vector-bias model for malaria transmission with incubation period in mosquitoes.
    Vargas-De-León C
    Math Biosci Eng; 2012 Jan; 9(1):165-74. PubMed ID: 22229402
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The past and present threat of vector-borne diseases in deployed troops.
    Pages F; Faulde M; Orlandi-Pradines E; Parola P
    Clin Microbiol Infect; 2010 Mar; 16(3):209-24. PubMed ID: 20222896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Virulence of vector-borne pathogens. A stochastic automata model of perpetuation.
    Kiszewski AE; Spielman A
    Ann N Y Acad Sci; 1994 Dec; 740():249-59. PubMed ID: 7840455
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Network-level reproduction number and extinction threshold for vector-borne diseases.
    Xue L; Scoglio C
    Math Biosci Eng; 2015 Jun; 12(3):565-84. PubMed ID: 25811553
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Periodic matrix population models: growth rate, basic reproduction number, and entropy.
    Bacaër N
    Bull Math Biol; 2009 Oct; 71(7):1781-92. PubMed ID: 19412636
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Temperature-dependent variation in the extrinsic incubation period elevates the risk of vector-borne disease emergence.
    Kamiya T; Greischar MA; Wadhawan K; Gilbert B; Paaijmans K; Mideo N
    Epidemics; 2019 Dec; 30():100382. PubMed ID: 32004794
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.