BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

984 related articles for article (PubMed ID: 25793723)

  • 1. The importance of lake sediments as a pathway for microcystin dynamics in shallow eutrophic lakes.
    Song H; Coggins LX; Reichwaldt ES; Ghadouani A
    Toxins (Basel); 2015 Mar; 7(3):900-18. PubMed ID: 25793723
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reduction in microcystin concentrations in large and shallow lakes: water and sediment-interface contributions.
    Chen W; Song L; Peng L; Wan N; Zhang X; Gan N
    Water Res; 2008 Feb; 42(3):763-73. PubMed ID: 17761208
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reconstructing a long-term record of microcystins from the analysis of lake sediments.
    Zastepa A; Taranu ZE; Kimpe LE; Blais JM; Gregory-Eaves I; Zurawell RW; Pick FR
    Sci Total Environ; 2017 Feb; 579():893-901. PubMed ID: 27887824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biotic and abiotic factors affect microcystin-LR concentrations in water/sediment interface.
    Santos A; Rachid C; Pacheco AB; Magalhães V
    Microbiol Res; 2020 Jun; 236():126452. PubMed ID: 32200249
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of nitrogen fixation in cyanobacterial bloom toxicity in a temperate, eutrophic lake.
    Beversdorf LJ; Miller TR; McMahon KD
    PLoS One; 2013; 8(2):e56103. PubMed ID: 23405255
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of sediments in the removal of microcystin-LR from water.
    Song H; Reichwaldt ES; Ghadouani A
    Toxicon; 2014 Jun; 83():84-90. PubMed ID: 24631598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial and temporal variability in the relationship between cyanobacterial biomass and microcystins.
    Sinang SC; Reichwaldt ES; Ghadouani A
    Environ Monit Assess; 2013 Aug; 185(8):6379-95. PubMed ID: 23232847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hepatotoxic cyanobacterial blooms in the lakes of northern Poland.
    Mankiewicz J; Komárková J; Izydorczyk K; Jurczak T; Tarczynska M; Zalewski M
    Environ Toxicol; 2005 Oct; 20(5):499-506. PubMed ID: 16161103
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Limnological Differences in a Two-Basin Lake Help to Explain the Occurrence of Anatoxin-a, Paralytic Shellfish Poisoning Toxins, and Microcystins.
    Smith ZJ; Conroe DE; Schulz KL; Boyer GL
    Toxins (Basel); 2020 Aug; 12(9):. PubMed ID: 32872651
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of cyanobacterial metabolites in surface and raw drinking waters reveals more than microcystin.
    Beversdorf LJ; Rude K; Weirich CA; Bartlett SL; Seaman M; Kozik C; Biese P; Gosz T; Suha M; Stempa C; Shaw C; Hedman C; Piatt JJ; Miller TR
    Water Res; 2018 Sep; 140():280-290. PubMed ID: 29729580
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Presence of the Cyanotoxin Microcystin in Arctic Lakes of Southwestern Greenland.
    Trout-Haney JV; Wood ZT; Cottingham KL
    Toxins (Basel); 2016 Aug; 8(9):. PubMed ID: 27589801
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cyanobacterial Abundance and Microcystin Profiles in Two Southern British Lakes: The Importance of Abiotic and Biotic Interactions.
    Hartnell DM; Chapman IJ; Taylor NGH; Esteban GF; Turner AD; Franklin DJ
    Toxins (Basel); 2020 Aug; 12(8):. PubMed ID: 32764428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of cyanobacteria and cyanobacterial toxins and their correlation with environmental parameters in Tri An Reservoir, Vietnam.
    Dao TS; Nimptsch J; Wiegand C
    J Water Health; 2016 Aug; 14(4):699-712. PubMed ID: 27441865
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of intracellular and extracellular microcystin variants in sediments and pore waters by accelerated solvent extraction and high performance liquid chromatography-tandem mass spectrometry.
    Zastepa A; Pick FR; Blais JM; Saleem A
    Anal Chim Acta; 2015 May; 872():26-34. PubMed ID: 25892066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitrogen limitation, toxin synthesis potential, and toxicity of cyanobacterial populations in Lake Okeechobee and the St. Lucie River Estuary, Florida, during the 2016 state of emergency event.
    Kramer BJ; Davis TW; Meyer KA; Rosen BH; Goleski JA; Dick GJ; Oh G; Gobler CJ
    PLoS One; 2018; 13(5):e0196278. PubMed ID: 29791446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Citizen monitoring: Testing hypotheses about the interactive influences of eutrophication and mussel invasion on a cyanobacterial toxin in lakes.
    Sarnelle O; Morrison J; Kaul R; Horst G; Wandell H; Bednarz R
    Water Res; 2010 Jan; 44(1):141-50. PubMed ID: 19781732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and monitoring toxigenicity of cyanobacteria by application of molecular methods.
    Mankiewicz-Boczek J; Izydorczyk K; Romanowska-Duda Z; Jurczak T; Stefaniak K; Kokocinski M
    Environ Toxicol; 2006 Aug; 21(4):380-7. PubMed ID: 16841323
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Groundwater contamination by microcystin from toxic cyanobacteria blooms in Lake Chaohu, China.
    Yang Z; Kong F; Zhang M
    Environ Monit Assess; 2016 May; 188(5):280. PubMed ID: 27068532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effective doses, guidelines & regulations.
    Burch MD
    Adv Exp Med Biol; 2008; 619():831-53. PubMed ID: 18461792
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temperature Effects Explain Continental Scale Distribution of Cyanobacterial Toxins.
    Mantzouki E; Lürling M; Fastner J; de Senerpont Domis L; Wilk-Woźniak E; Koreivienė J; Seelen L; Teurlincx S; Verstijnen Y; Krztoń W; Walusiak E; Karosienė J; Kasperovičienė J; Savadova K; Vitonytė I; Cillero-Castro C; Budzyńska A; Goldyn R; Kozak A; Rosińska J; Szeląg-Wasielewska E; Domek P; Jakubowska-Krepska N; Kwasizur K; Messyasz B; Pełechaty A; Pełechaty M; Kokocinski M; García-Murcia A; Real M; Romans E; Noguero-Ribes J; Duque DP; Fernández-Morán E; Karakaya N; Häggqvist K; Demir N; Beklioğlu M; Filiz N; Levi EE; Iskin U; Bezirci G; Tavşanoğlu ÜN; Özhan K; Gkelis S; Panou M; Fakioglu Ö; Avagianos C; Kaloudis T; Çelik K; Yilmaz M; Marcé R; Catalán N; Bravo AG; Buck M; Colom-Montero W; Mustonen K; Pierson D; Yang Y; Raposeiro PM; Gonçalves V; Antoniou MG; Tsiarta N; McCarthy V; Perello VC; Feldmann T; Laas A; Panksep K; Tuvikene L; Gagala I; Mankiewicz-Boczek J; Yağcı MA; Çınar Ş; Çapkın K; Yağcı A; Cesur M; Bilgin F; Bulut C; Uysal R; Obertegger U; Boscaini A; Flaim G; Salmaso N; Cerasino L; Richardson J; Visser PM; Verspagen JMH; Karan T; Soylu EN; Maraşlıoğlu F; Napiórkowska-Krzebietke A; Ochocka A; Pasztaleniec A; Antão-Geraldes AM; Vasconcelos V; Morais J; Vale M; Köker L; Akçaalan R; Albay M; Špoljarić Maronić D; Stević F; Žuna Pfeiffer T; Fonvielle J; Straile D; Rothhaupt KO; Hansson LA; Urrutia-Cordero P; Bláha L; Geriš R; Fránková M; Koçer MAT; Alp MT; Remec-Rekar S; Elersek T; Triantis T; Zervou SK; Hiskia A; Haande S; Skjelbred B; Madrecka B; Nemova H; Drastichova I; Chomova L; Edwards C; Sevindik TO; Tunca H; Önem B; Aleksovski B; Krstić S; Vucelić IB; Nawrocka L; Salmi P; Machado-Vieira D; de Oliveira AG; Delgado-Martín J; García D; Cereijo JL; Gomà J; Trapote MC; Vegas-Vilarrúbia T; Obrador B; Grabowska M; Karpowicz M; Chmura D; Úbeda B; Gálvez JÁ; Özen A; Christoffersen KS; Warming TP; Kobos J; Mazur-Marzec H; Pérez-Martínez C; Ramos-Rodríguez E; Arvola L; Alcaraz-Párraga P; Toporowska M; Pawlik-Skowronska B; Niedźwiecki M; Pęczuła W; Leira M; Hernández A; Moreno-Ostos E; Blanco JM; Rodríguez V; Montes-Pérez JJ; Palomino RL; Rodríguez-Pérez E; Carballeira R; Camacho A; Picazo A; Rochera C; Santamans AC; Ferriol C; Romo S; Soria JM; Dunalska J; Sieńska J; Szymański D; Kruk M; Kostrzewska-Szlakowska I; Jasser I; Žutinić P; Gligora Udovič M; Plenković-Moraj A; Frąk M; Bańkowska-Sobczak A; Wasilewicz M; Özkan K; Maliaka V; Kangro K; Grossart HP; Paerl HW; Carey CC; Ibelings BW
    Toxins (Basel); 2018 Apr; 10(4):. PubMed ID: 29652856
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 50.