These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

337 related articles for article (PubMed ID: 25793810)

  • 1. Observation of motion-dependent nonlinear dispersion with narrow-linewidth atoms in an optical cavity.
    Westergaard PG; Christensen BT; Tieri D; Matin R; Cooper J; Holland M; Ye J; Thomsen JW
    Phys Rev Lett; 2015 Mar; 114(9):093002. PubMed ID: 25793810
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A superradiant clock laser on a magic wavelength optical lattice.
    Maier T; Kraemer S; Ostermann L; Ritsch H
    Opt Express; 2014 Jun; 22(11):13269-79. PubMed ID: 24921521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultranarrow Superradiant Lasing by Dark Atom-Photon Dressed States.
    Zhang Y; Shan C; Mølmer K
    Phys Rev Lett; 2021 Mar; 126(12):123602. PubMed ID: 33834832
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A steady-state superradiant laser with less than one intracavity photon.
    Bohnet JG; Chen Z; Weiner JM; Meiser D; Holland MJ; Thompson JK
    Nature; 2012 Apr; 484(7392):78-81. PubMed ID: 22481360
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prospects for a millihertz-linewidth laser.
    Meiser D; Ye J; Carlson DR; Holland MJ
    Phys Rev Lett; 2009 Apr; 102(16):163601. PubMed ID: 19518709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superradiant lasing in inhomogeneously broadened ensembles with spatially varying coupling.
    Bychek A; Hotter C; Plankensteiner D; Ritsch H
    Open Res Eur; 2021; 1():73. PubMed ID: 37645148
    [No Abstract]   [Full Text] [Related]  

  • 7. Superradiance on the millihertz linewidth strontium clock transition.
    Norcia MA; Winchester MN; Cline JR; Thompson JK
    Sci Adv; 2016 Oct; 2(10):e1601231. PubMed ID: 27757423
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Supercooling of Atoms in an Optical Resonator.
    Xu M; Jäger SB; Schütz S; Cooper J; Morigi G; Holland MJ
    Phys Rev Lett; 2016 Apr; 116(15):153002. PubMed ID: 27127966
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetically Induced Optical Transparency on a Forbidden Transition in Strontium for Cavity-Enhanced Spectroscopy.
    Winchester MN; Norcia MA; Cline JRK; Thompson JK
    Phys Rev Lett; 2017 Jun; 118(26):263601. PubMed ID: 28707949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb.
    Inaba H; Hosaka K; Yasuda M; Nakajima Y; Iwakuni K; Akamatsu D; Okubo S; Kohno T; Onae A; Hong FL
    Opt Express; 2013 Apr; 21(7):7891-6. PubMed ID: 23571880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium.
    Akamatsu D; Nakajima Y; Inaba H; Hosaka K; Yasuda M; Onae A; Hong FL
    Opt Express; 2012 Jul; 20(14):16010-6. PubMed ID: 22772290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonlinear optical filter with ultranarrow bandwidth approaching the natural linewidth.
    Wang Y; Zhang S; Wang D; Tao Z; Hong Y; Chen J
    Opt Lett; 2012 Oct; 37(19):4059-61. PubMed ID: 23027278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An all-optical locking of a semiconductor laser to the atomic resonance line with 1 MHz accuracy.
    Zhang X; Tao Z; Zhu C; Hong Y; Zhuang W; Chen J
    Opt Express; 2013 Nov; 21(23):28010-8. PubMed ID: 24514314
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Long-external-cavity distributed Bragg reflector laser with subkilohertz intrinsic linewidth.
    Lin Q; Van Camp MA; Zhang H; Jelenković B; Vuletić V
    Opt Lett; 2012 Jun; 37(11):1989-91. PubMed ID: 22660097
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lasing by driven atoms-cavity system in collective strong coupling regime.
    Sawant R; Rangwala SA
    Sci Rep; 2017 Sep; 7(1):11432. PubMed ID: 28900221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Optical clocks based on ultranarrow three-photon resonances in alkaline Earth atoms.
    Hong T; Cramer C; Nagourney W; Fortson EN
    Phys Rev Lett; 2005 Feb; 94(5):050801. PubMed ID: 15783624
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissipative optomechanics in a Michelson-Sagnac interferometer.
    Xuereb A; Schnabel R; Hammerer K
    Phys Rev Lett; 2011 Nov; 107(21):213604. PubMed ID: 22181881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-amplified lock of an ultra-narrow linewidth optical cavity.
    Izumi K; Sigg D; Barsotti L
    Opt Lett; 2014 Sep; 39(18):5285-8. PubMed ID: 26466252
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Subnatural Linewidth Superradiant Lasing with Cold ^{88}Sr Atoms.
    Kristensen SL; Bohr E; Robinson-Tait J; Zelevinsky T; Thomsen JW; Müller JH
    Phys Rev Lett; 2023 Jun; 130(22):223402. PubMed ID: 37327424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Demonstration of all-optical phase noise suppression scheme using optical nonlinearity and conversion/dispersion delay.
    Chitgarha MR; Khaleghi S; Ziyadi M; Mohajerin-Ariaei A; Almaiman A; Daab W; Rogawski D; Tur M; Touch JD; Langrock C; Fejer MM; Willner AE
    Opt Lett; 2014 May; 39(10):2928-31. PubMed ID: 24978239
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.