These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 25793849)

  • 1. Dynamically controlled resonance fluorescence spectra from a doubly dressed single InGaAs quantum dot.
    He Y; He YM; Liu J; Wei YJ; Ramírez HY; Atatüre M; Schneider C; Kamp M; Höfling S; Lu CY; Pan JW
    Phys Rev Lett; 2015 Mar; 114(9):097402. PubMed ID: 25793849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Observation of dressed excitonic states in a single quantum dot.
    Jundt G; Robledo L; Högele A; Fält S; Imamoğlu A
    Phys Rev Lett; 2008 May; 100(17):177401. PubMed ID: 18518335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical stark effect and dressed exciton states in a Mn-doped CdTe quantum dot.
    Le Gall C; Brunetti A; Boukari H; Besombes L
    Phys Rev Lett; 2011 Jul; 107(5):057401. PubMed ID: 21867096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Beating of exciton-dressed states in a single semiconductor InGaAs/GaAs quantum dot.
    Boyle SJ; Ramsay AJ; Fox AM; Skolnick MS; Heberle AP; Hopkinson M
    Phys Rev Lett; 2009 May; 102(20):207401. PubMed ID: 19519075
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phonon-assisted population inversion of a single InGaAs/GaAs quantum dot by pulsed laser excitation.
    Quilter JH; Brash AJ; Liu F; Glässl M; Barth AM; Axt VM; Ramsay AJ; Skolnick MS; Fox AM
    Phys Rev Lett; 2015 Apr; 114(13):137401. PubMed ID: 25884136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum light emission of two lateral tunnel-coupled (In,Ga)As/GaAs quantum dots controlled by a tunable static electric field.
    Beirne GJ; Hermannstädter C; Wang L; Rastelli A; Schmidt OG; Michler P
    Phys Rev Lett; 2006 Apr; 96(13):137401. PubMed ID: 16712031
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phonon-dressed Mollow triplet in the regime of cavity quantum electrodynamics: excitation-induced dephasing and nonperturbative cavity feeding effects.
    Roy C; Hughes S
    Phys Rev Lett; 2011 Jun; 106(24):247403. PubMed ID: 21770598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optical Stark effect in a quantum dot: ultrafast control of single exciton polarizations.
    Unold T; Mueller K; Lienau C; Elsaesser T; Wieck AD
    Phys Rev Lett; 2004 Apr; 92(15):157401. PubMed ID: 15169317
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Signatures of Dynamically Dressed States.
    Boos K; Kim SK; Bracht T; Sbresny F; Kaspari JM; Cygorek M; Riedl H; Bopp FW; Rauhaus W; Calcagno C; Finley JJ; Reiter DE; Müller K
    Phys Rev Lett; 2024 Feb; 132(5):053602. PubMed ID: 38364136
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Single charged quantum dot in a strong optical field: absorption, gain, and the ac-Stark effect.
    Xu X; Sun B; Kim ED; Smirl K; Berman PR; Steel DG; Bracker AS; Gammon D; Sham LJ
    Phys Rev Lett; 2008 Nov; 101(22):227401. PubMed ID: 19113521
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative excited state spectroscopy of a single InGaAs quantum dot molecule through multi-million-atom electronic structure calculations.
    Usman M; Tan YH; Ryu H; Ahmed SS; Krenner HJ; Boykin TB; Klimeck G
    Nanotechnology; 2011 Aug; 22(31):315709. PubMed ID: 21737873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically tunable spontaneous Raman fluorescence from a single self-assembled InGaAs quantum dot.
    Fernandez G; Volz T; Desbuquois R; Badolato A; Imamoglu A
    Phys Rev Lett; 2009 Aug; 103(8):087406. PubMed ID: 19792764
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurement of a heavy-hole hyperfine interaction in InGaAs quantum dots using resonance fluorescence.
    Fallahi P; Yilmaz ST; Imamoğlu A
    Phys Rev Lett; 2010 Dec; 105(25):257402. PubMed ID: 21231626
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Coherently-enabled environmental control of optics and energy transfer pathways of hybrid quantum dot-metallic nanoparticle systems.
    Hatef A; Sadeghi SM; Fortin-Deschênes S; Boulais E; Meunier M
    Opt Express; 2013 Mar; 21(5):5643-53. PubMed ID: 23482138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic nuclear spin polarization in the resonant laser excitation of an InGaAs quantum dot.
    Högele A; Kroner M; Latta C; Claassen M; Carusotto I; Bulutay C; Imamoglu A
    Phys Rev Lett; 2012 May; 108(19):197403. PubMed ID: 23003088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ramsey fringes in an electric-field-tunable quantum dot system.
    Stufler S; Ester P; Zrenner A; Bichler M
    Phys Rev Lett; 2006 Jan; 96(3):037402. PubMed ID: 16486766
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantum interference between the third and fourth exciton states in semiconducting carbon nanotubes using resonance Raman spectroscopy.
    Duque JG; Telg H; Chen H; Swan AK; Shreve AP; Tu X; Zheng M; Doorn SK
    Phys Rev Lett; 2012 Mar; 108(11):117404. PubMed ID: 22540509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coulomb Mediated Hybridization of Excitons in Coupled Quantum Dots.
    Ardelt PL; Gawarecki K; Müller K; Waeber AM; Bechtold A; Oberhofer K; Daniels JM; Klotz F; Bichler M; Kuhn T; Krenner HJ; Machnikowski P; Finley JJ
    Phys Rev Lett; 2016 Feb; 116(7):077401. PubMed ID: 26943557
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laser-controlled exciton Fano resonance in semiconductor superlattices.
    Maeshima N; Yamada K; Hino K
    J Phys Condens Matter; 2013 Oct; 25(43):435801. PubMed ID: 24097286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Excitonic energy shell structure of self-assembled InGaAs/GaAs quantum dots.
    Raymond S; Studenikin S; Sachrajda A; Wasilewski Z; Cheng SJ; Sheng W; Hawrylak P; Babinski A; Potemski M; Ortner G; Bayer M
    Phys Rev Lett; 2004 May; 92(18):187402. PubMed ID: 15169530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.