BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 2579396)

  • 1. Acidic pH requirement for insertion of colicin E1 into artificial membrane vesicles: relevance to the mechanism of action of colicins and certain toxins.
    Davidson VL; Brunden KR; Cramer WA
    Proc Natl Acad Sci U S A; 1985 Mar; 82(5):1386-90. PubMed ID: 2579396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dynamic properties of membrane proteins: reversible insertion into membrane vesicles of a colicin E1 channel-forming peptide.
    Xu S; Cramer WA; Peterson AA; Hermodson M; Montecucco C
    Proc Natl Acad Sci U S A; 1988 Oct; 85(20):7531-5. PubMed ID: 2459708
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1.
    Elkins P; Bunker A; Cramer WA; Stauffacher CV
    Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical modification of the two histidine and single cysteine residues in the channel-forming domain of colicin E1.
    Bishop LJ; Cohen FS; Davidson VL; Cramer WA
    J Membr Biol; 1986; 92(3):237-45. PubMed ID: 2431147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On the explanation of the acidic pH requirement for in vitro activity of colicin E1. Site-directed mutagenesis at Glu-468.
    Shiver JW; Cramer WA; Cohen FS; Bishop LJ; de Jong PJ
    J Biol Chem; 1987 Oct; 262(29):14273-81. PubMed ID: 2443503
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dependence of the activity of colicin E1 in artificial membrane vesicles on pH, membrane potential, and vesicle size.
    Davidson VL; Cramer WA; Bishop LJ; Brunden KR
    J Biol Chem; 1984 Jan; 259(1):594-600. PubMed ID: 6706954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic properties of the colicin E1 ion channel.
    Cramer WA; Zhang YL; Schendel S; Merrill AR; Song HY; Stauffacher CV; Cohen FS
    FEMS Microbiol Immunol; 1992 Sep; 5(1-3):71-81. PubMed ID: 1384599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage-dependent, monomeric channel activity of colicin E1 in artificial membrane vesicles.
    Peterson AA; Cramer WA
    J Membr Biol; 1987; 99(3):197-204. PubMed ID: 2447282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mapping the membrane topology of the closed state of the colicin E1 channel.
    Palmer LR; Merrill AR
    J Biol Chem; 1994 Feb; 269(6):4187-93. PubMed ID: 7508440
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Site-directed mutagenesis of the charged residues near the carboxy terminus of the colicin E1 ion channel.
    Shiver JW; Cohen FS; Merrill AR; Cramer WA
    Biochemistry; 1988 Nov; 27(22):8421-8. PubMed ID: 2468358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A single tryptic fragment of colicin E1 can form an ion channel: stoichiometry confirms kinetics.
    Levinthal F; Todd AP; Hubbell WL; Levinthal C
    Proteins; 1991; 11(4):254-62. PubMed ID: 1722045
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of the macroscopic and single channel conductance properties of colicin E1 and its COOH-terminal tryptic peptide.
    Bullock JO; Cohen FS; Dankert JR; Cramer WA
    J Biol Chem; 1983 Aug; 258(16):9908-12. PubMed ID: 6309789
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A 'molten-globule' membrane-insertion intermediate of the pore-forming domain of colicin A.
    van der Goot FG; González-Mañas JM; Lakey JH; Pattus F
    Nature; 1991 Dec; 354(6352):408-10. PubMed ID: 1956406
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of the conformation of a colicin E1 channel-forming peptide on acidic pH and solvent polarity.
    Brunden KR; Uratani Y; Cramer WA
    J Biol Chem; 1984 Jun; 259(12):7682-7. PubMed ID: 6736022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a voltage-responsive segment of the potential-gated colicin E1 ion channel.
    Merrill AR; Cramer WA
    Biochemistry; 1990 Sep; 29(37):8529-34. PubMed ID: 1702993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constraints imposed by protease accessibility on the trans-membrane and surface topography of the colicin E1 ion channel.
    Zhang YL; Cramer WA
    Protein Sci; 1992 Dec; 1(12):1666-76. PubMed ID: 1284805
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the nature of the unfolded intermediate in the in vitro transition of the colicin E1 channel domain from the aqueous to the membrane phase.
    Schendel SL; Cramer WA
    Protein Sci; 1994 Dec; 3(12):2272-9. PubMed ID: 7756984
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Channels formed by colicin E1 in planar lipid bilayers are large and exhibit pH-dependent ion selectivity.
    Raymond L; Slatin SL; Finkelstein A
    J Membr Biol; 1985; 84(2):173-81. PubMed ID: 2582133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated light-scattering spectroscopy, a sensitive probe for peptide-vesicle binding: application to the membrane-bound colicin E1 channel peptide.
    Strawbridge KB; Palmer LR; Merrill AR; Hallett FR
    Biophys J; 1995 Jan; 68(1):131-6. PubMed ID: 7711234
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.