These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 2579396)

  • 21. Acrylamide quenching of the intrinsic fluorescence of tryptophan residues genetically engineered into the soluble colicin E1 channel peptide. Structural characterization of the insertion-competent state.
    Merrill AR; Palmer LR; Szabo AG
    Biochemistry; 1993 Jul; 32(27):6974-81. PubMed ID: 7687465
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structure-function relationships for a voltage-dependent ion channel: properties of COOH-terminal fragments of colicin E1.
    Cleveland MV; Slatin S; Finkelstein A; Levinthal C
    Proc Natl Acad Sci U S A; 1983 Jun; 80(12):3706-10. PubMed ID: 6304732
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Gating processes of channels induced by colicin A, its C-terminal fragment and colicin E1 in planar lipid bilayers.
    Collarini M; Amblard G; Lazdunski C; Pattus F
    Eur Biophys J; 1987; 14(3):147-53. PubMed ID: 3830093
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Membrane binding of the colicin E1 channel: activity requires an electrostatic interaction of intermediate magnitude.
    Zakharov SD; Heymann JB; Zhang YL; Cramer WA
    Biophys J; 1996 Jun; 70(6):2774-83. PubMed ID: 8744315
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Orientational distribution of alpha-helices in the colicin B and E1 channel domains: a one and two dimensional 15N solid-state NMR investigation in uniaxially aligned phospholipid bilayers.
    Lambotte S; Jasperse P; Bechinger B
    Biochemistry; 1998 Jan; 37(1):16-22. PubMed ID: 9453746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Gating of a voltage-dependent channel (colicin E1) in planar lipid bilayers: translocation of regions outside the channel-forming domain.
    Raymond L; Slatin SL; Finkelstein A; Liu QR; Levinthal C
    J Membr Biol; 1986; 92(3):255-68. PubMed ID: 2431149
    [TBL] [Abstract][Full Text] [Related]  

  • 27. On a domain structure of colicin E1. A COOH-terminal peptide fragment active in membrane depolarization.
    Dankert JR; Uratani Y; Grabau C; Cramer WA; Hermodson M
    J Biol Chem; 1982 Apr; 257(7):3857-63. PubMed ID: 7037787
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different sensitivities to acid denaturation within a family of proteins: implications for acid unfolding and membrane translocation.
    Evans LJ; Goble ML; Hales KA; Lakey JH
    Biochemistry; 1996 Oct; 35(40):13180-5. PubMed ID: 8855956
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Kinetic description of structural changes linked to membrane import of the colicin E1 channel protein.
    Zakharov SD; Lindeberg M; Cramer WA
    Biochemistry; 1999 Aug; 38(35):11325-32. PubMed ID: 10471282
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A very short peptide makes a voltage-dependent ion channel: the critical length of the channel domain of colicin E1.
    Liu QR; Crozel V; Levinthal F; Slatin S; Finkelstein A; Levinthal C
    Proteins; 1986 Nov; 1(3):218-29. PubMed ID: 2453053
    [TBL] [Abstract][Full Text] [Related]  

  • 31. pH-dependent membrane fusion is promoted by various colicins.
    Pattus F; Cavard D; Crozel V; Baty D; Adrian M; Lazdunski C
    EMBO J; 1985 Oct; 4(10):2469-74. PubMed ID: 3902468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Determination of membrane protein topology by red-edge excitation shift analysis: application to the membrane-bound colicin E1 channel peptide.
    Tory MC; Merrill AR
    Biochim Biophys Acta; 2002 Aug; 1564(2):435-48. PubMed ID: 12175927
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of colicins Ia and E1 on ion permeability of liposomes.
    Tokuda H; Konisky J
    Proc Natl Acad Sci U S A; 1979 Dec; 76(12):6167-71. PubMed ID: 93288
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the nature of the structural change of the colicin E1 channel peptide necessary for its translocation-competent state.
    Merrill AR; Cohen FS; Cramer WA
    Biochemistry; 1990 Jun; 29(24):5829-36. PubMed ID: 2200517
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Colicin occlusion of OmpF and TolC channels: outer membrane translocons for colicin import.
    Zakharov SD; Eroukova VY; Rokitskaya TI; Zhalnina MV; Sharma O; Loll PJ; Zgurskaya HI; Antonenko YN; Cramer WA
    Biophys J; 2004 Dec; 87(6):3901-11. PubMed ID: 15465872
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Histidine 440 controls the opening of colicin E1 channels in a lipid-dependent manner.
    Sobko AA; Rokitskaya TI; Kotova EA
    Biochim Biophys Acta; 2009 Sep; 1788(9):1962-6. PubMed ID: 19560438
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Ion selectivity of colicin E1: modulation by pH and membrane composition.
    Bullock JO
    J Membr Biol; 1992 Feb; 125(3):255-71. PubMed ID: 1372939
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In Situ Electrochemical and PM-IRRAS Studies of Colicin E1 Ion Channels in the Floating Bilayer Lipid Membrane.
    Su Z; Ho D; Merrill AR; Lipkowski J
    Langmuir; 2019 Jun; 35(25):8452-8459. PubMed ID: 31194562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The domain structure of the ion channel-forming protein colicin Ia.
    Ghosh P; Mel SF; Stroud RM
    Nat Struct Biol; 1994 Sep; 1(9):597-604. PubMed ID: 7543362
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural analyses of a channel-forming fragment of colicin E1 incorporated into lipid vesicles. Fourier-transform infrared and tryptophan fluorescence studies.
    Suga H; Shirabe K; Yamamoto T; Tasumi M; Umeda M; Nishimura C; Nakazawa A; Nakanishi M; Arata Y
    J Biol Chem; 1991 Jul; 266(21):13537-43. PubMed ID: 1713207
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.