These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

228 related articles for article (PubMed ID: 25794193)

  • 1. DISIS: prediction of drug response through an iterative sure independence screening.
    Fang Y; Qin Y; Zhang N; Wang J; Wang H; Zheng X
    PLoS One; 2015; 10(3):e0120408. PubMed ID: 25794193
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iterative sure independent ranking and screening for drug response prediction.
    An B; Zhang Q; Fang Y; Chen M; Qin Y
    BMC Med Inform Decis Mak; 2020 Sep; 20(Suppl 8):224. PubMed ID: 32962705
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improved anticancer drug response prediction in cell lines using matrix factorization with similarity regularization.
    Wang L; Li X; Zhang L; Gao Q
    BMC Cancer; 2017 Aug; 17(1):513. PubMed ID: 28768489
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anticancer drug sensitivity prediction in cell lines from baseline gene expression through recursive feature selection.
    Dong Z; Zhang N; Li C; Wang H; Fang Y; Wang J; Zheng X
    BMC Cancer; 2015 Jun; 15():489. PubMed ID: 26121976
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Explainable drug sensitivity prediction through cancer pathway enrichment.
    Tang YC; Gottlieb A
    Sci Rep; 2021 Feb; 11(1):3128. PubMed ID: 33542382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A quantile regression forest based method to predict drug response and assess prediction reliability.
    Fang Y; Xu P; Yang J; Qin Y
    PLoS One; 2018; 13(10):e0205155. PubMed ID: 30289891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting breast cancer drug response using a multiple-layer cell line drug response network model.
    Huang S; Hu P; Lakowski TM
    BMC Cancer; 2021 May; 21(1):648. PubMed ID: 34059012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pharmacogenetics and pharmacogenomics as tools in cancer therapy.
    Rodríguez-Vicente AE; Lumbreras E; Hernández JM; Martín M; Calles A; Otín CL; Algarra SM; Páez D; Taron M
    Drug Metab Pers Ther; 2016 Mar; 31(1):25-34. PubMed ID: 26863347
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal drug prediction from personal genomics profiles.
    Sheng J; Li F; Wong ST
    IEEE J Biomed Health Inform; 2015 Jul; 19(4):1264-70. PubMed ID: 25781964
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Prediction of Acquired Taxane Resistance Using a Personalized Pathway-Based Machine Learning Method.
    Kim YR; Kim D; Kim SY
    Cancer Res Treat; 2019 Apr; 51(2):672-684. PubMed ID: 30092623
    [TBL] [Abstract][Full Text] [Related]  

  • 11. DROEG: a method for cancer drug response prediction based on omics and essential genes integration.
    Wu P; Sun R; Fahira A; Chen Y; Jiangzhou H; Wang K; Yang Q; Dai Y; Pan D; Shi Y; Wang Z
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715269
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Data Mining Approaches for Genomic Biomarker Development: Applications Using Drug Screening Data from the Cancer Genome Project and the Cancer Cell Line Encyclopedia.
    Covell DG
    PLoS One; 2015; 10(7):e0127433. PubMed ID: 26132924
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ensembled machine learning framework for drug sensitivity prediction.
    Sharma A; Rani R
    IET Syst Biol; 2020 Feb; 14(1):39-46. PubMed ID: 31931480
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational identification of multi-omic correlates of anticancer therapeutic response.
    Stetson LC; Pearl T; Chen Y; Barnholtz-Sloan JS
    BMC Genomics; 2014; 15 Suppl 7(Suppl 7):S2. PubMed ID: 25573145
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multitask learning improves prediction of cancer drug sensitivity.
    Yuan H; Paskov I; Paskov H; González AJ; Leslie CS
    Sci Rep; 2016 Aug; 6():31619. PubMed ID: 27550087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep-Resp-Forest: A deep forest model to predict anti-cancer drug response.
    Su R; Liu X; Wei L; Zou Q
    Methods; 2019 Aug; 166():91-102. PubMed ID: 30772464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RefDNN: a reference drug based neural network for more accurate prediction of anticancer drug resistance.
    Choi J; Park S; Ahn J
    Sci Rep; 2020 Feb; 10(1):1861. PubMed ID: 32024872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identifying anti-cancer drug response related genes using an integrative analysis of transcriptomic and genomic variations with cell line-based drug perturbations.
    Sun Y; Zhang W; Chen Y; Ma Q; Wei J; Liu Q
    Oncotarget; 2016 Feb; 7(8):9404-19. PubMed ID: 26824188
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Cancer Cell Line Encyclopedia enables predictive modelling of anticancer drug sensitivity.
    Barretina J; Caponigro G; Stransky N; Venkatesan K; Margolin AA; Kim S; Wilson CJ; Lehár J; Kryukov GV; Sonkin D; Reddy A; Liu M; Murray L; Berger MF; Monahan JE; Morais P; Meltzer J; Korejwa A; Jané-Valbuena J; Mapa FA; Thibault J; Bric-Furlong E; Raman P; Shipway A; Engels IH; Cheng J; Yu GK; Yu J; Aspesi P; de Silva M; Jagtap K; Jones MD; Wang L; Hatton C; Palescandolo E; Gupta S; Mahan S; Sougnez C; Onofrio RC; Liefeld T; MacConaill L; Winckler W; Reich M; Li N; Mesirov JP; Gabriel SB; Getz G; Ardlie K; Chan V; Myer VE; Weber BL; Porter J; Warmuth M; Finan P; Harris JL; Meyerson M; Golub TR; Morrissey MP; Sellers WR; Schlegel R; Garraway LA
    Nature; 2012 Mar; 483(7391):603-7. PubMed ID: 22460905
    [TBL] [Abstract][Full Text] [Related]  

  • 20. kESVR: An Ensemble Model for Drug Response Prediction in Precision Medicine Using Cancer Cell Lines Gene Expression.
    Majumdar A; Liu Y; Lu Y; Wu S; Cheng L
    Genes (Basel); 2021 May; 12(6):. PubMed ID: 34070793
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.