BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25794437)

  • 1. Quantitative analysis of proteome and lipidome dynamics reveals functional regulation of global lipid metabolism.
    Casanovas A; Sprenger RR; Tarasov K; Ruckerbauer DE; Hannibal-Bach HK; Zanghellini J; Jensen ON; Ejsing CS
    Chem Biol; 2015 Mar; 22(3):412-25. PubMed ID: 25794437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sphingolipids: major regulators of lipid metabolism.
    Worgall TS
    Curr Opin Clin Nutr Metab Care; 2007 Mar; 10(2):149-55. PubMed ID: 17285002
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipid particles/droplets of the yeast Saccharomyces cerevisiae revisited: lipidome meets proteome.
    Grillitsch K; Connerth M; Köfeler H; Arrey TN; Rietschel B; Wagner B; Karas M; Daum G
    Biochim Biophys Acta; 2011 Dec; 1811(12):1165-76. PubMed ID: 21820081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Absolute quantitative lipidomics reveals lipidome-wide alterations in aging brain.
    Tu J; Yin Y; Xu M; Wang R; Zhu ZJ
    Metabolomics; 2017 Nov; 14(1):5. PubMed ID: 30830317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae.
    Daum G; Lees ND; Bard M; Dickson R
    Yeast; 1998 Dec; 14(16):1471-510. PubMed ID: 9885152
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Systematic analysis of yeast strains with possible defects in lipid metabolism.
    Daum G; Tuller G; Nemec T; Hrastnik C; Balliano G; Cattel L; Milla P; Rocco F; Conzelmann A; Vionnet C; Kelly DE; Kelly S; Schweizer E; Schüller HJ; Hojad U; Greiner E; Finger K
    Yeast; 1999 May; 15(7):601-14. PubMed ID: 10341423
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of crosstalks between the Snf1 kinase complex and sphingolipid metabolism in S. cerevisiae via systems biology approaches.
    Borklu Yucel E; Ulgen KO
    Mol Biosyst; 2013 Nov; 9(11):2914-31. PubMed ID: 24056632
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global analysis of the yeast lipidome by quantitative shotgun mass spectrometry.
    Ejsing CS; Sampaio JL; Surendranath V; Duchoslav E; Ekroos K; Klemm RW; Simons K; Shevchenko A
    Proc Natl Acad Sci U S A; 2009 Feb; 106(7):2136-41. PubMed ID: 19174513
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lipid dynamics in yeast under haem-induced unsaturated fatty acid and/or sterol depletion.
    Ferreira T; Régnacq M; Alimardani P; Moreau-Vauzelle C; Bergès T
    Biochem J; 2004 Mar; 378(Pt 3):899-908. PubMed ID: 14640980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Yeast lipid metabolism at a glance.
    Klug L; Daum G
    FEMS Yeast Res; 2014 May; 14(3):369-88. PubMed ID: 24520995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic lipidomic analysis of yeast protein kinase and phosphatase mutants reveals novel insights into regulation of lipid homeostasis.
    da Silveira Dos Santos AX; Riezman I; Aguilera-Romero MA; David F; Piccolis M; Loewith R; Schaad O; Riezman H
    Mol Biol Cell; 2014 Oct; 25(20):3234-46. PubMed ID: 25143408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A systems biology approach reveals the role of a novel methyltransferase in response to chemical stress and lipid homeostasis.
    Lissina E; Young B; Urbanus ML; Guan XL; Lowenson J; Hoon S; Baryshnikova A; Riezman I; Michaut M; Riezman H; Cowen LE; Wenk MR; Clarke SG; Giaever G; Nislow C
    PLoS Genet; 2011 Oct; 7(10):e1002332. PubMed ID: 22028670
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative Profiling of Long-Chain Bases by Mass Tagging and Parallel Reaction Monitoring.
    Ejsing CS; Bilgin M; Fabregat A
    PLoS One; 2015; 10(12):e0144817. PubMed ID: 26660097
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The yeast model system as a tool towards the understanding of apoptosis regulation by sphingolipids.
    Rego A; Trindade D; Chaves SR; Manon S; Costa V; Sousa MJ; Côrte-Real M
    FEMS Yeast Res; 2014 Feb; 14(1):160-78. PubMed ID: 24103214
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential proteome-metabolome profiling of YCA1-knock-out and wild type cells reveals novel metabolic pathways and cellular processes dependent on the yeast metacaspase.
    Ždralević M; Longo V; Guaragnella N; Giannattasio S; Timperio AM; Zolla L
    Mol Biosyst; 2015 Jun; 11(6):1573-83. PubMed ID: 25697364
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Application of stable isotopes to investigate the metabolism of fatty acids, glycerophospholipid and sphingolipid species.
    Ecker J; Liebisch G
    Prog Lipid Res; 2014 Apr; 54():14-31. PubMed ID: 24462586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functions and metabolism of sphingolipids in Saccharomyces cerevisiae.
    Dickson RC; Sumanasekera C; Lester RL
    Prog Lipid Res; 2006 Nov; 45(6):447-65. PubMed ID: 16730802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics of neutral lipid storage in yeast.
    Müllner H; Daum G
    Acta Biochim Pol; 2004; 51(2):323-47. PubMed ID: 15218532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid and comprehensive 'shotgun' lipidome profiling of colorectal cancer cell derived exosomes.
    Lydic TA; Townsend S; Adda CG; Collins C; Mathivanan S; Reid GE
    Methods; 2015 Oct; 87():83-95. PubMed ID: 25907253
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flexibility of a eukaryotic lipidome--insights from yeast lipidomics.
    Klose C; Surma MA; Gerl MJ; Meyenhofer F; Shevchenko A; Simons K
    PLoS One; 2012; 7(4):e35063. PubMed ID: 22529973
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.