BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 25794617)

  • 1. Bacterial riboswitches cooperatively bind Ni(2+) or Co(2+) ions and control expression of heavy metal transporters.
    Furukawa K; Ramesh A; Zhou Z; Weinberg Z; Vallery T; Winkler WC; Breaker RR
    Mol Cell; 2015 Mar; 57(6):1088-1098. PubMed ID: 25794617
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural basis for gene regulation by a thiamine pyrophosphate-sensing riboswitch.
    Serganov A; Polonskaia A; Phan AT; Breaker RR; Patel DJ
    Nature; 2006 Jun; 441(7097):1167-71. PubMed ID: 16728979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multiple metal-binding cores are required for metalloregulation by M-box riboswitch RNAs.
    Wakeman CA; Ramesh A; Winkler WC
    J Mol Biol; 2009 Sep; 392(3):723-35. PubMed ID: 19619558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bacterial gene regulation: metal ion sensing by proteins or RNA.
    Brantl S
    Trends Biotechnol; 2006 Sep; 24(9):383-6. PubMed ID: 16872703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches.
    Price IR; Gaballa A; Ding F; Helmann JD; Ke A
    Mol Cell; 2015 Mar; 57(6):1110-1123. PubMed ID: 25794619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and mechanism of a metal-sensing regulatory RNA.
    Dann CE; Wakeman CA; Sieling CL; Baker SC; Irnov I; Winkler WC
    Cell; 2007 Sep; 130(5):878-92. PubMed ID: 17803910
    [TBL] [Abstract][Full Text] [Related]  

  • 7. E88, a new cyclic-di-GMP class I riboswitch aptamer from Clostridium tetani, has a similar fold to the prototypical class I riboswitch, Vc2, but differentially binds to c-di-GMP analogs.
    Luo Y; Chen B; Zhou J; Sintim HO; Dayie TK
    Mol Biosyst; 2014 Mar; 10(3):384-90. PubMed ID: 24430255
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metalloriboswitches: RNA-based inorganic ion sensors that regulate genes.
    Wedekind JE; Dutta D; Belashov IA; Jenkins JL
    J Biol Chem; 2017 Jun; 292(23):9441-9450. PubMed ID: 28455443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The roles of metal ions in regulation by riboswitches.
    Ferré-D'Amaré AR; Winkler WC
    Met Ions Life Sci; 2011; 9():141-73. PubMed ID: 22010271
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Selective binding of 2'-F-c-di-GMP to Ct-E88 and Cb-E43, new class I riboswitches from Clostridium tetani and Clostridium botulinum respectively.
    Luo Y; Zhou J; Wang J; Dayie TK; Sintim HO
    Mol Biosyst; 2013 Jun; 9(6):1535-9. PubMed ID: 23559271
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A glycine-dependent riboswitch that uses cooperative binding to control gene expression.
    Mandal M; Lee M; Barrick JE; Weinberg Z; Emilsson GM; Ruzzo WL; Breaker RR
    Science; 2004 Oct; 306(5694):275-9. PubMed ID: 15472076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Widespread genetic switches and toxicity resistance proteins for fluoride.
    Baker JL; Sudarsan N; Weinberg Z; Roth A; Stockbridge RB; Breaker RR
    Science; 2012 Jan; 335(6065):233-235. PubMed ID: 22194412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochemical Validation of a Second Guanidine Riboswitch Class in Bacteria.
    Sherlock ME; Malkowski SN; Breaker RR
    Biochemistry; 2017 Jan; 56(2):352-358. PubMed ID: 28001368
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A functional genetic screen reveals sequence preferences within a key tertiary interaction in cobalamin riboswitches required for ligand selectivity.
    Polaski JT; Kletzien OA; Drogalis LK; Batey RT
    Nucleic Acids Res; 2018 Sep; 46(17):9094-9105. PubMed ID: 29945209
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local-to-global signal transduction at the core of a Mn
    Suddala KC; Price IR; Dandpat SS; Janeček M; Kührová P; Šponer J; Banáš P; Ke A; Walter NG
    Nat Commun; 2019 Sep; 10(1):4304. PubMed ID: 31541094
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Riboswitch-Mediated Gene Regulation: Novel RNA Architectures Dictate Gene Expression Responses.
    Sherwood AV; Henkin TM
    Annu Rev Microbiol; 2016 Sep; 70():361-74. PubMed ID: 27607554
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A small RNA that cooperatively senses two stacked metabolites in one pocket for gene control.
    Schroeder GM; Cavender CE; Blau ME; Jenkins JL; Mathews DH; Wedekind JE
    Nat Commun; 2022 Jan; 13(1):199. PubMed ID: 35017488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic analysis of riboswitch-mediated transcriptional regulation responding to Mn2+ in Salmonella.
    Shi Y; Zhao G; Kong W
    J Biol Chem; 2014 Apr; 289(16):11353-11366. PubMed ID: 24596096
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Riboswitches for the alarmone ppGpp expand the collection of RNA-based signaling systems.
    Sherlock ME; Sudarsan N; Breaker RR
    Proc Natl Acad Sci U S A; 2018 Jun; 115(23):6052-6057. PubMed ID: 29784782
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biophysical Approaches to Bacterial Gene Regulation by Riboswitches.
    Perez-Gonzalez C; Grondin JP; Lafontaine DA; Carlos Penedo J
    Adv Exp Med Biol; 2016; 915():157-91. PubMed ID: 27193543
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.