These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Bacterial gene regulation: metal ion sensing by proteins or RNA. Brantl S Trends Biotechnol; 2006 Sep; 24(9):383-6. PubMed ID: 16872703 [TBL] [Abstract][Full Text] [Related]
5. Mn(2+)-sensing mechanisms of yybP-ykoY orphan riboswitches. Price IR; Gaballa A; Ding F; Helmann JD; Ke A Mol Cell; 2015 Mar; 57(6):1110-1123. PubMed ID: 25794619 [TBL] [Abstract][Full Text] [Related]
6. Structure and mechanism of a metal-sensing regulatory RNA. Dann CE; Wakeman CA; Sieling CL; Baker SC; Irnov I; Winkler WC Cell; 2007 Sep; 130(5):878-92. PubMed ID: 17803910 [TBL] [Abstract][Full Text] [Related]
7. E88, a new cyclic-di-GMP class I riboswitch aptamer from Clostridium tetani, has a similar fold to the prototypical class I riboswitch, Vc2, but differentially binds to c-di-GMP analogs. Luo Y; Chen B; Zhou J; Sintim HO; Dayie TK Mol Biosyst; 2014 Mar; 10(3):384-90. PubMed ID: 24430255 [TBL] [Abstract][Full Text] [Related]
9. The roles of metal ions in regulation by riboswitches. Ferré-D'Amaré AR; Winkler WC Met Ions Life Sci; 2011; 9():141-73. PubMed ID: 22010271 [TBL] [Abstract][Full Text] [Related]
10. Selective binding of 2'-F-c-di-GMP to Ct-E88 and Cb-E43, new class I riboswitches from Clostridium tetani and Clostridium botulinum respectively. Luo Y; Zhou J; Wang J; Dayie TK; Sintim HO Mol Biosyst; 2013 Jun; 9(6):1535-9. PubMed ID: 23559271 [TBL] [Abstract][Full Text] [Related]
11. A glycine-dependent riboswitch that uses cooperative binding to control gene expression. Mandal M; Lee M; Barrick JE; Weinberg Z; Emilsson GM; Ruzzo WL; Breaker RR Science; 2004 Oct; 306(5694):275-9. PubMed ID: 15472076 [TBL] [Abstract][Full Text] [Related]
13. Biochemical Validation of a Second Guanidine Riboswitch Class in Bacteria. Sherlock ME; Malkowski SN; Breaker RR Biochemistry; 2017 Jan; 56(2):352-358. PubMed ID: 28001368 [TBL] [Abstract][Full Text] [Related]
14. A functional genetic screen reveals sequence preferences within a key tertiary interaction in cobalamin riboswitches required for ligand selectivity. Polaski JT; Kletzien OA; Drogalis LK; Batey RT Nucleic Acids Res; 2018 Sep; 46(17):9094-9105. PubMed ID: 29945209 [TBL] [Abstract][Full Text] [Related]
15. Local-to-global signal transduction at the core of a Mn Suddala KC; Price IR; Dandpat SS; Janeček M; Kührová P; Šponer J; Banáš P; Ke A; Walter NG Nat Commun; 2019 Sep; 10(1):4304. PubMed ID: 31541094 [TBL] [Abstract][Full Text] [Related]
17. A small RNA that cooperatively senses two stacked metabolites in one pocket for gene control. Schroeder GM; Cavender CE; Blau ME; Jenkins JL; Mathews DH; Wedekind JE Nat Commun; 2022 Jan; 13(1):199. PubMed ID: 35017488 [TBL] [Abstract][Full Text] [Related]
18. Genetic analysis of riboswitch-mediated transcriptional regulation responding to Mn2+ in Salmonella. Shi Y; Zhao G; Kong W J Biol Chem; 2014 Apr; 289(16):11353-11366. PubMed ID: 24596096 [TBL] [Abstract][Full Text] [Related]
19. Riboswitches for the alarmone ppGpp expand the collection of RNA-based signaling systems. Sherlock ME; Sudarsan N; Breaker RR Proc Natl Acad Sci U S A; 2018 Jun; 115(23):6052-6057. PubMed ID: 29784782 [TBL] [Abstract][Full Text] [Related]
20. Biophysical Approaches to Bacterial Gene Regulation by Riboswitches. Perez-Gonzalez C; Grondin JP; Lafontaine DA; Carlos Penedo J Adv Exp Med Biol; 2016; 915():157-91. PubMed ID: 27193543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]