These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 25794648)
1. Evaluation of semi-generic PBTK modeling for emergency risk assessment after acute inhalation exposure to volatile hazardous chemicals. Olie JD; Bessems JG; Clewell HJ; Meulenbelt J; Hunault CC Chemosphere; 2015 Aug; 132():47-55. PubMed ID: 25794648 [TBL] [Abstract][Full Text] [Related]
2. Physiologically based modeling of the maximal effect of metabolic interactions on the kinetics of components of complex chemical mixtures. Haddad S; Charest-Tardif G; Krishnan K J Toxicol Environ Health A; 2000 Oct; 61(3):209-23. PubMed ID: 11036509 [TBL] [Abstract][Full Text] [Related]
3. A generic, cross-chemical predictive PBTK model with multiple entry routes running as application in MS Excel; design of the model and comparison of predictions with experimental results. Jongeneelen FJ; Berge WF Ann Occup Hyg; 2011 Oct; 55(8):841-64. PubMed ID: 21998005 [TBL] [Abstract][Full Text] [Related]
4. Assessing human variability in kinetics for exposures to multiple environmental chemicals: a physiologically based pharmacokinetic modeling case study with dichloromethane, benzene, toluene, ethylbenzene, and m-xylene. Valcke M; Haddad S J Toxicol Environ Health A; 2015; 78(7):409-31. PubMed ID: 25785556 [TBL] [Abstract][Full Text] [Related]
5. Evaluation of three physiologically based pharmacokinetic (PBPK) modeling tools for emergency risk assessment after acute dichloromethane exposure. Boerleider RZ; Olie JD; van Eijkeren JC; Bos PM; Hof BG; de Vries I; Bessems JG; Meulenbelt J; Hunault CC Toxicol Lett; 2015 Jan; 232(1):21-7. PubMed ID: 25455448 [TBL] [Abstract][Full Text] [Related]
6. An integrated QSAR-PBPK modelling approach for predicting the inhalation toxicokinetics of mixtures of volatile organic chemicals in the rat. Price K; Krishnan K SAR QSAR Environ Res; 2011 Mar; 22(1-2):107-28. PubMed ID: 21391144 [TBL] [Abstract][Full Text] [Related]
7. Validation of a physiological modeling framework for simulating the toxicokinetics of chemicals in mixtures. Haddad S; Charest-Tardif G; Tardif R; Krishnan K Toxicol Appl Pharmacol; 2000 Sep; 167(3):199-209. PubMed ID: 10986011 [TBL] [Abstract][Full Text] [Related]
8. A generic PBTK model implemented in the MCRA platform: Predictive performance and uses in risk assessment of chemicals. Tebby C; van der Voet H; de Sousa G; Rorije E; Kumar V; de Boer W; Kruisselbrink JW; Bois FY; Faniband M; Moretto A; Brochot C Food Chem Toxicol; 2020 Aug; 142():111440. PubMed ID: 32473292 [TBL] [Abstract][Full Text] [Related]
9. An assessment of the impact of multi-route co-exposures on human variability in toxicokinetics: A case study with binary and quaternary mixtures of volatile drinking water contaminants. Tohon H; Valcke M; Haddad S J Appl Toxicol; 2019 Jul; 39(7):974-991. PubMed ID: 30834571 [TBL] [Abstract][Full Text] [Related]
10. Simulation of the toxicokinetics of trichloroethylene, methylene chloride, styrene and n-hexane by a toxicokinetics/toxicodynamics model using experimental data. Nakayama Y; Kishida F; Nakatsuka I; Matsuo M Environ Sci; 2005; 12(1):21-32. PubMed ID: 15793558 [TBL] [Abstract][Full Text] [Related]
11. Development and intercomparison of single and multicompartment physiologically-based toxicokinetic models: Implications for model selection and tiered modeling frameworks. Armitage JM; Hughes L; Sangion A; Arnot JA Environ Int; 2021 Sep; 154():106557. PubMed ID: 33892222 [TBL] [Abstract][Full Text] [Related]
12. Generic physiologically-based toxicokinetic modelling for fish: Integration of environmental factors and species variability. Grech A; Tebby C; Brochot C; Bois FY; Bado-Nilles A; Dorne JL; Quignot N; Beaudouin R Sci Total Environ; 2019 Feb; 651(Pt 1):516-531. PubMed ID: 30243171 [TBL] [Abstract][Full Text] [Related]
13. Development of physiologically based toxicokinetic models for improving the human indoor exposure assessment to water contaminants: trichloroethylene and trihalomethanes. Haddad S; Tardif GC; Tardif R J Toxicol Environ Health A; 2006 Dec; 69(23):2095-136. PubMed ID: 17060096 [TBL] [Abstract][Full Text] [Related]
14. A modeling approach to account for toxicokinetic interactions in the calculation of biological hazard index for chemical mixtures. Haddad S; Tardif R; Viau C; Krishnan K Toxicol Lett; 1999 Sep; 108(2-3):303-8. PubMed ID: 10511275 [TBL] [Abstract][Full Text] [Related]
15. Physiological modeling of the toxicokinetic interactions in a quaternary mixture of aromatic hydrocarbons. Haddad S; Tardif R; Charest-Tardif G; Krishnan K Toxicol Appl Pharmacol; 1999 Dec; 161(3):249-57. PubMed ID: 10620482 [TBL] [Abstract][Full Text] [Related]
16. Application of physiologically based toxicokinetic modelling to study the impact of the exposure scenario on the toxicokinetics and the behavioural effects of toluene in rats. van Asperen J; Rijcken WR; Lammers JH Toxicol Lett; 2003 Feb; 138(1-2):51-62. PubMed ID: 12559692 [TBL] [Abstract][Full Text] [Related]
17. Development of a preliminary physiologically based toxicokinetic (PBTK) model for 1,3-butadiene risk assessment. Sweeney LM; Himmelstein MW; Gargas ML Chem Biol Interact; 2001 Jun; 135-136():303-22. PubMed ID: 11397398 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of a rapid, generic human gestational dose model. Kapraun DF; Sfeir M; Pearce RG; Davidson-Fritz SE; Lumen A; Dallmann A; Judson RS; Wambaugh JF Reprod Toxicol; 2022 Oct; 113():172-188. PubMed ID: 36122840 [TBL] [Abstract][Full Text] [Related]
20. [Blood interface in environmental and occupational exposure to industrial chemical pollutants]. Brugnone F; Perbellini L G Ital Med Lav; 1994; 16(1-6):11-7. PubMed ID: 8682265 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]