These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 25794875)

  • 1. Acetate is a superior substrate for microbial fuel cell initiation preceding bioethanol effluent utilization.
    Sun G; Thygesen A; Meyer AS
    Appl Microbiol Biotechnol; 2015 Jun; 99(11):4905-15. PubMed ID: 25794875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electricity generation and microbial community response to substrate changes in microbial fuel cell.
    Zhang Y; Min B; Huang L; Angelidaki I
    Bioresour Technol; 2011 Jan; 102(2):1166-73. PubMed ID: 20952193
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells.
    Huang L; Logan BE
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):655-64. PubMed ID: 18626640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell.
    Liu H; Cheng S; Logan BE
    Environ Sci Technol; 2005 Jan; 39(2):658-62. PubMed ID: 15707069
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microbial community composition and electricity generation in cattle manure slurry treatment using microbial fuel cells: effects of inoculum addition.
    Xie B; Gong W; Ding A; Yu H; Qu F; Tang X; Yan Z; Li G; Liang H
    Environ Sci Pollut Res Int; 2017 Oct; 24(29):23226-23235. PubMed ID: 28831702
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of different substrates and humic acid on power generation in microbial fuel cell operation.
    Thygesen A; Poulsen FW; Min B; Angelidaki I; Thomsen AB
    Bioresour Technol; 2009 Feb; 100(3):1186-91. PubMed ID: 18815026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.
    Lee YY; Kim TG; Cho KS
    J Biotechnol; 2015 Oct; 211():130-7. PubMed ID: 26235818
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Does pre-enrichment of anodes with acetate to select for
    Christgen B; Spurr M; Milner EM; Izadi P; McCann C; Yu E; Curtis T; Scott K; Head IM
    Front Microbiol; 2023; 14():1199286. PubMed ID: 38075904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Comparison of power generation in microbial fuel cells of two different structures].
    Luo HP; Liu GL; Zhang RD; Jin S
    Huan Jing Ke Xue; 2009 Feb; 30(2):621-4. PubMed ID: 19402526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs).
    Sharma Y; Li B
    Bioresour Technol; 2010 Mar; 101(6):1844-50. PubMed ID: 19931449
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variations of electron flux and microbial community in air-cathode microbial fuel cells fed with different substrates.
    Yu J; Park Y; Cho H; Chun J; Seon J; Cho S; Lee T
    Water Sci Technol; 2012; 66(4):748-53. PubMed ID: 22766862
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electricity production from xylose using a mediator-less microbial fuel cell.
    Huang L; Zeng RJ; Angelidaki I
    Bioresour Technol; 2008 Jul; 99(10):4178-84. PubMed ID: 17964145
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells.
    Dunaj SJ; Vallino JJ; Hines ME; Gay M; Kobyljanec C; Rooney-Varga JN
    Environ Sci Technol; 2012 Feb; 46(3):1914-22. PubMed ID: 22243479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells.
    Huang L; Angelidaki I
    Biotechnol Bioeng; 2008 Jun; 100(3):413-22. PubMed ID: 18306421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Performance and microbial diversity of palm oil mill effluent microbial fuel cell.
    Jong BC; Liew PW; Lebai Juri M; Kim BH; Mohd Dzomir AZ; Leo KW; Awang MR
    Lett Appl Microbiol; 2011 Dec; 53(6):660-7. PubMed ID: 21967346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Power production and microbial community composition in thermophilic acetate-fed up-flow and flow-through microbial fuel cells.
    Dessì P; Chatterjee P; Mills S; Kokko M; Lakaniemi AM; Collins G; Lens PNL
    Bioresour Technol; 2019 Dec; 294():122115. PubMed ID: 31541978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of substrate concentrations on performance of serially connected microbial fuel cells (MFCs) operated in a continuous mode.
    Gurung A; Kim J; Jung S; Jeon BH; Yang JE; Oh SE
    Biotechnol Lett; 2012 Oct; 34(10):1833-9. PubMed ID: 22674064
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Degradation of pentachlorophenol with the presence of fermentable and non-fermentable co-substrates in a microbial fuel cell.
    Huang L; Gan L; Zhao Q; Logan BE; Lu H; Chen G
    Bioresour Technol; 2011 Oct; 102(19):8762-8. PubMed ID: 21824764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing factors of electricity generation in a microbial fuel cell using Geobacter sulfurreducens.
    Kim MS; Cha J; Kim DH
    J Microbiol Biotechnol; 2012 Oct; 22(10):1395-400. PubMed ID: 23075791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bioelectricity production from soil using microbial fuel cells.
    Wolińska A; Stępniewska Z; Bielecka A; Ciepielski J
    Appl Biochem Biotechnol; 2014 Aug; 173(8):2287-96. PubMed ID: 24980749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.