These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 25795739)

  • 1. Use of crop simulation modelling to aid ideotype design of future cereal cultivars.
    Rötter RP; Tao F; Höhn JG; Palosuo T
    J Exp Bot; 2015 Jun; 66(12):3463-76. PubMed ID: 25795739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying traits for genotypic adaptation using crop models.
    Ramirez-Villegas J; Watson J; Challinor AJ
    J Exp Bot; 2015 Jun; 66(12):3451-62. PubMed ID: 25750429
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A trait-based model ensemble approach to design rice plant types for future climate.
    Paleari L; Li T; Yang Y; Wilson LT; Hasegawa T; Boote KJ; Buis S; Hoogenboom G; Gao Y; Movedi E; Ruget F; Singh U; Stöckle CO; Tang L; Wallach D; Zhu Y; Confalonieri R
    Glob Chang Biol; 2022 Apr; 28(8):2689-2710. PubMed ID: 35043531
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QTLian breeding for climate resilience in cereals: progress and prospects.
    Choudhary M; Wani SH; Kumar P; Bagaria PK; Rakshit S; Roorkiwal M; Varshney RK
    Funct Integr Genomics; 2019 Sep; 19(5):685-701. PubMed ID: 31093800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Designing a high-yielding maize ideotype for a changing climate in Lombardy plain (northern Italy).
    Perego A; Sanna M; Giussani A; Chiodini ME; Fumagalli M; Pilu SR; Bindi M; Moriondo M; Acutis M
    Sci Total Environ; 2014 Nov; 499():497-509. PubMed ID: 24913890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Impact of climate change on crop yield and role of model for achieving food security.
    Kumar M
    Environ Monit Assess; 2016 Aug; 188(8):465. PubMed ID: 27418072
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Testing the responses of four wheat crop models to heat stress at anthesis and grain filling.
    Liu B; Asseng S; Liu L; Tang L; Cao W; Zhu Y
    Glob Chang Biol; 2016 May; 22(5):1890-903. PubMed ID: 26725507
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Architecture of Flowering Phenology in Cereals and Opportunities for Crop Improvement.
    Hill CB; Li C
    Front Plant Sci; 2016; 7():1906. PubMed ID: 28066466
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simultaneous improvement in productivity, water use, and albedo through crop structural modification.
    Drewry DT; Kumar P; Long SP
    Glob Chang Biol; 2014 Jun; 20(6):1955-67. PubMed ID: 24700722
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving barley culm robustness for secured crop yield in a changing climate.
    Dockter C; Hansson M
    J Exp Bot; 2015 Jun; 66(12):3499-509. PubMed ID: 25614659
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heat tolerance around flowering in wheat identified as a key trait for increased yield potential in Europe under climate change.
    Stratonovitch P; Semenov MA
    J Exp Bot; 2015 Jun; 66(12):3599-609. PubMed ID: 25750425
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterizing drought stress and trait influence on maize yield under current and future conditions.
    Harrison MT; Tardieu F; Dong Z; Messina CD; Hammer GL
    Glob Chang Biol; 2014 Mar; 20(3):867-78. PubMed ID: 24038882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying target traits and molecular mechanisms for wheat breeding under a changing climate.
    Semenov MA; Halford NG
    J Exp Bot; 2009; 60(10):2791-804. PubMed ID: 19487387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Closing the global ozone yield gap: Quantification and cobenefits for multistress tolerance.
    Mills G; Sharps K; Simpson D; Pleijel H; Frei M; Burkey K; Emberson L; Uddling J; Broberg M; Feng Z; Kobayashi K; Agrawal M
    Glob Chang Biol; 2018 Oct; 24(10):4869-4893. PubMed ID: 30084165
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reproductive-Stage Heat Stress in Cereals: Impact, Plant Responses and Strategies for Tolerance Improvement.
    Zenda T; Wang N; Dong A; Zhou Y; Duan H
    Int J Mol Sci; 2022 Jun; 23(13):. PubMed ID: 35805930
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessing yield gap in high productive countries by designing wheat ideotypes.
    Senapati N; Semenov MA
    Sci Rep; 2019 Apr; 9(1):5516. PubMed ID: 30940895
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High night temperatures during grain number determination reduce wheat and barley grain yield: a field study.
    García GA; Dreccer MF; Miralles DJ; Serrago RA
    Glob Chang Biol; 2015 Nov; 21(11):4153-64. PubMed ID: 26111197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of agro-physiological traits of lentil that reduce risks of drought.
    Tefera AT; O'Leary GJ; Thayalakumaran T; Rao S; Silva-Perez V; Shunmugam ASK; Armstrong R; Rosewarne GM
    Front Plant Sci; 2022; 13():1019491. PubMed ID: 36352869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can the development of drought tolerant ideotype sustain Australian chickpea yield?
    Kaloki P; Luo Q; Trethowan R; Tan DKY
    Int J Biometeorol; 2019 Mar; 63(3):393-403. PubMed ID: 30687903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of time of sowing and cultivar choice for managing climate change: wheat crop phenology and water use efficiency.
    Luo Q; O'Leary G; Cleverly J; Eamus D
    Int J Biometeorol; 2018 Jun; 62(6):1049-1061. PubMed ID: 29423733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.