These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 25796232)

  • 1. Theoretical and numerical investigations of inverse patchy colloids in the fluid phase.
    Kalyuzhnyi YV; Bianchi E; Ferrari S; Kahl G
    J Chem Phys; 2015 Mar; 142(11):114108. PubMed ID: 25796232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inverse patchy colloids with small patches: fluid structure and dynamical slowing down.
    Ferrari S; Bianchi E; Kalyuzhnyi YV; Kahl G
    J Phys Condens Matter; 2015 Jun; 27(23):234104. PubMed ID: 26010958
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inverse patchy colloids with two and three patches. Analytical and numerical study.
    Kalyuzhnyi YV; Vasilyev OA; Cummings PT
    J Chem Phys; 2015 Jul; 143(4):044904. PubMed ID: 26233161
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From square-well to Janus: improved algorithm for integral equation theory and comparison with thermodynamic perturbation theory within the Kern-Frenkel model.
    Giacometti A; Gögelein C; Lado F; Sciortino F; Ferrari S; Pastore G
    J Chem Phys; 2014 Mar; 140(9):094104. PubMed ID: 24606350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integral equation theory for a mixture of spherical and patchy colloids: analytical description.
    Kalyuzhnyi YV; Nezbeda I; Cummings PT
    Soft Matter; 2020 Apr; 16(14):3456-3465. PubMed ID: 32201867
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluid-fluid and fluid-solid transitions in the Kern-Frenkel model from Barker-Henderson thermodynamic perturbation theory.
    Gögelein C; Romano F; Sciortino F; Giacometti A
    J Chem Phys; 2012 Mar; 136(9):094512. PubMed ID: 22401457
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integral equation theory for fluids ordered by an external field: separable interactions.
    Perera A
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2912-29. PubMed ID: 11970096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic and structural properties of mixed colloids represented by a hard-core two-Yukawa mixture model fluid: Monte Carlo simulations and an analytical theory.
    Yu YX; Jin L
    J Chem Phys; 2008 Jan; 128(1):014901. PubMed ID: 18190220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microscopic structure and thermodynamics of a core-softened model fluid: insights from grand canonical Monte Carlo simulations and integral equations theory.
    Pizio O; Dominguez H; Duda Y; Sokołowski S
    J Chem Phys; 2009 May; 130(17):174504. PubMed ID: 19425787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamic properties of model solids with short-ranged potentials from Monte Carlo simulations and perturbation theory.
    Díez A; Largo J; Solana JR
    J Phys Chem B; 2007 Aug; 111(34):10194-201. PubMed ID: 17683133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reference interaction site model investigation of homonuclear hard dumbbells under simple fluid theory closures: comparison with Monte Carlo simulations.
    Munaò G; Costa D; Caccamo C
    J Chem Phys; 2009 Apr; 130(14):144504. PubMed ID: 19368458
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Replica Ornstein-Zernike self-consistent theory for mixtures in random pores.
    Pellicane G; Caccamo C; Wilson DS; Lee LL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061202. PubMed ID: 15244549
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase diagram and structural properties of a simple model for one-patch particles.
    Giacometti A; Lado F; Largo J; Pastore G; Sciortino F
    J Chem Phys; 2009 Nov; 131(17):174114. PubMed ID: 19895005
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reference hypernetted chain theory for ferrofluid bilayer: distribution functions compared with Monte Carlo.
    Polyakov EA; Vorontsov-Velyaminov PN
    J Chem Phys; 2014 Aug; 141(8):084109. PubMed ID: 25173007
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructing a new closure theory based on the third-order Ornstein-Zernike equation and a study of the adsorption of simple fluids.
    Lee LL
    J Chem Phys; 2011 Nov; 135(20):204706. PubMed ID: 22128951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local structure and thermodynamics of a core-softened potential fluid: theory and simulation.
    Zhou S; Jamnik A; Wolfe E; Buldyrev SV
    Chemphyschem; 2007 Jan; 8(1):138-47. PubMed ID: 17121412
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of ternary additive hard-sphere fluid mixtures.
    Malijevský A; Malijevský A; Yuste SB; Santos A; López de Haro M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Dec; 66(6 Pt 1):061203. PubMed ID: 12513273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integral equation theory for mixtures of spherical and patchy colloids. 2. Numerical results.
    Kalyuzhnyi YV; Nezbeda I; Cummings PT
    Soft Matter; 2021 Mar; 17(12):3513-3519. PubMed ID: 33662078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical description of phase coexistence in model C60.
    Costa D; Pellicane G; Caccamo C; Schöll-Paschinger E; Kahl G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Aug; 68(2 Pt 1):021104. PubMed ID: 14524950
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Theoretical aspects and computer simulations of flexible charged oligomers in salt-free solutions.
    Bizjak A; Rescic J; Kalyuzhnyi YV; Vlachy V
    J Chem Phys; 2006 Dec; 125(21):214907. PubMed ID: 17166049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.