These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 25796247)

  • 1. Excitonic optical properties of wurtzite ZnS quantum dots under pressure.
    Zeng Z; Garoufalis CS; Baskoutas S; Bester G
    J Chem Phys; 2015 Mar; 142(11):114305. PubMed ID: 25796247
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of quantum size confinement on the optical properties of PbSe nanocrystals under exposure to heat and hydrostatic pressure.
    Pedrueza E; Segura A; Abargues R; Bailach JB; Chervin JC; Martínez-Pastor JP
    Nanotechnology; 2013 May; 24(20):205701. PubMed ID: 23598706
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of an excitonic ground state in InAs/InSb quantum dots.
    He L; Bester G; Zunger A
    Phys Rev Lett; 2005 Jan; 94(1):016801. PubMed ID: 15698111
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Organic molecules as tools to control the growth, surface structure, and redox activity of colloidal quantum dots.
    Weiss EA
    Acc Chem Res; 2013 Nov; 46(11):2607-15. PubMed ID: 23734589
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the Potential of
    Patra SK; Schulz S
    Nano Lett; 2020 Jan; 20(1):234-241. PubMed ID: 31760752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantum dots as dynamical systems.
    Gavartin JL; Stoneham AM
    Philos Trans A Math Phys Eng Sci; 2003 Feb; 361(1803):275-89; discussion 290. PubMed ID: 12639383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A search for lowest energy structures of ZnS quantum dots: Genetic algorithm tight-binding study.
    Pal S; Sharma R; Goswami B; Sarkar P; Bhattacharyya SP
    J Chem Phys; 2009 Jun; 130(21):214703. PubMed ID: 19508083
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitonic Energy Transfer within InP/ZnS Quantum Dot Langmuir-Blodgett Assemblies.
    Bahmani Jalali H; Melikov R; Sadeghi S; Nizamoglu S
    J Phys Chem C Nanomater Interfaces; 2018 Jun; 122(22):11616-11622. PubMed ID: 30057655
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Morphology-tuned wurtzite-type ZnS nanobelts.
    Wang Z; Daemen LL; Zhao Y; Zha CS; Downs RT; Wang X; Wang ZL; Hemley RJ
    Nat Mater; 2005 Dec; 4(12):922-7. PubMed ID: 16284620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal field splitting and spontaneous polarization in InP crystal phase quantum dots.
    Patera M; Zieliński M
    Sci Rep; 2022 Sep; 12(1):15561. PubMed ID: 36114259
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning spin properties of excitons in single CdTe quantum dots by annealing.
    Hewaparakrama KP; Mackowski S; Jackson HE; Smith LM; Heiss W; Karczewski G
    Nanotechnology; 2008 Mar; 19(12):125706. PubMed ID: 21817747
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Valence band offset, strain and shape effects on confined states in self-assembled InAs/InP and InAs/GaAs quantum dots.
    Zieliński M
    J Phys Condens Matter; 2013 Nov; 25(46):465301. PubMed ID: 24129261
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct quantitative electrical measurement of many-body interactions in exciton complexes in InAs quantum dots.
    Labud PA; Ludwig A; Wieck AD; Bester G; Reuter D
    Phys Rev Lett; 2014 Jan; 112(4):046803. PubMed ID: 24580478
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relaxation of exciton confinement in CdSe quantum dots by modification with a conjugated dithiocarbamate ligand.
    Frederick MT; Weiss EA
    ACS Nano; 2010 Jun; 4(6):3195-200. PubMed ID: 20503978
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of temperature and dot size on the spectral properties of colloidal InP/ZnS core-shell quantum dots.
    Narayanaswamy A; Feiner LF; Meijerink A; van der Zaag PJ
    ACS Nano; 2009 Sep; 3(9):2539-46. PubMed ID: 19681583
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Excitonic effects on the second-order nonlinear optical properties of semi-spherical quantum dots.
    Flórez J; Camacho A
    Nanoscale Res Lett; 2011 Mar; 6(1):268. PubMed ID: 21711791
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Size dependence of the multiple exciton generation rate in CdSe quantum dots.
    Lin Z; Franceschetti A; Lusk MT
    ACS Nano; 2011 Apr; 5(4):2503-11. PubMed ID: 21355556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exciton polarization, fine-structure splitting, and the asymmetry of quantum dots under uniaxial stress.
    Gong M; Zhang W; Guo GC; He L
    Phys Rev Lett; 2011 Jun; 106(22):227401. PubMed ID: 21702632
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Size-dependent fine-structure splitting in self-organized InAs/GaAs quantum dots.
    Seguin R; Schliwa A; Rodt S; Pötschke K; Pohl UW; Bimberg D
    Phys Rev Lett; 2005 Dec; 95(25):257402. PubMed ID: 16384505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and characterizations of ultra-small ZnS and Zn(1-x)Fe(x)S quantum dots in aqueous media and spectroscopic study of their interactions with bovine serum albumin.
    Khani O; Rajabi HR; Yousefi MH; Khosravi AA; Jannesari M; Shamsipur M
    Spectrochim Acta A Mol Biomol Spectrosc; 2011 Jul; 79(2):361-9. PubMed ID: 21482179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.