These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

179 related articles for article (PubMed ID: 25796247)

  • 21. Band-edge exciton fine structure of small, nearly spherical colloidal CdSe/ZnS quantum dots.
    Moreels I; Rainò G; Gomes R; Hens Z; Stöferle T; Mahrt RF
    ACS Nano; 2011 Oct; 5(10):8033-9. PubMed ID: 21961786
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Size-dependent magneto-optical effects in CdMnTe diluted magnetic quantum dots.
    Wojnar P; Suffczyński J; Kowalik K; Golnik A; Aleszkiewicz M; Karczewski G; Kossut J
    Nanotechnology; 2008 Jun; 19(23):235403. PubMed ID: 21825792
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optical excitations in stoichiometric uncapped ZnS nanostructures.
    Zwijnenburg MA
    Nanoscale; 2011 Sep; 3(9):3780-7. PubMed ID: 21829808
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A theoretical study of exciton energy levels in laterally coupled quantum dots.
    Barticevic Z; Pacheco M; Duque CA; Oliveira LE
    J Phys Condens Matter; 2009 Oct; 21(40):405801. PubMed ID: 21832423
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Size-dependent optical properties of colloidal PbS quantum dots.
    Moreels I; Lambert K; Smeets D; De Muynck D; Nollet T; Martins JC; Vanhaecke F; Vantomme A; Delerue C; Allan G; Hens Z
    ACS Nano; 2009 Oct; 3(10):3023-30. PubMed ID: 19780530
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Near-band-edge exciton polarization change in ZnO nanowires.
    Zeng Z; Petoni A; Garoufalis CS; Baskoutas S; Bester G
    Phys Chem Chem Phys; 2015 Jan; 17(2):1197-203. PubMed ID: 25418832
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photoinduced dynamics in semiconductor quantum dots: insights from time-domain ab initio studies.
    Prezhdo OV
    Acc Chem Res; 2009 Dec; 42(12):2005-16. PubMed ID: 19888715
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Electron emission from diamondoids: a diffusion quantum Monte Carlo study.
    Drummond ND; Williamson AJ; Needs RJ; Galli G
    Phys Rev Lett; 2005 Aug; 95(9):096801. PubMed ID: 16197235
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unraveling the structure and dynamics of excitons in semiconductor quantum dots.
    Kambhampati P
    Acc Chem Res; 2011 Jan; 44(1):1-13. PubMed ID: 20942416
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrafast optical control of individual quantum dot spin qubits.
    De Greve K; Press D; McMahon PL; Yamamoto Y
    Rep Prog Phys; 2013 Sep; 76(9):092501. PubMed ID: 24006335
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dielectric response function for colloidal semiconductor quantum dots.
    Karpulevich A; Bui H; Wang Z; Hapke S; Palencia Ramírez C; Weller H; Bester G
    J Chem Phys; 2019 Dec; 151(22):224103. PubMed ID: 31837677
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Synthesis and photoluminescence of ZnS quantum dots.
    Wang YH; Chen Z; Zhou XQ
    J Nanosci Nanotechnol; 2008 Mar; 8(3):1312-5. PubMed ID: 18468145
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced many-body effects in 2- and 1-dimensional ZnO structures: a Green's function perturbation theory study.
    Wei W; Dai Y; Huang B; Jacob T
    J Chem Phys; 2013 Oct; 139(14):144703. PubMed ID: 24116637
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Amorphous Ge quantum dots embedded in crystalline Si: ab initio results.
    Laubscher M; Küfner S; Kroll P; Bechstedt F
    J Phys Condens Matter; 2015 Oct; 27(40):405302. PubMed ID: 26402441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Determination of the exciton binding energy in CdSe quantum dots.
    Meulenberg RW; Lee JR; Wolcott A; Zhang JZ; Terminello LJ; van Buuren T
    ACS Nano; 2009 Feb; 3(2):325-30. PubMed ID: 19236067
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Voltage-controlled optics of a quantum dot.
    Högele A; Seidl S; Kroner M; Karrai K; Warburton RJ; Gerardot BD; Petroff PM
    Phys Rev Lett; 2004 Nov; 93(21):217401. PubMed ID: 15601062
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Flame-formed carbon nanoparticles exhibit quantum dot behaviors.
    Liu C; Singh AV; Saggese C; Tang Q; Chen D; Wan K; Vinciguerra M; Commodo M; De Falco G; Minutolo P; D'Anna A; Wang H
    Proc Natl Acad Sci U S A; 2019 Jun; 116(26):12692-12697. PubMed ID: 31182580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The surface termination effect on the quantum confinement and electron affinities of 3C-SiC quantum dots: a first-principles study.
    Zhang Z; Dai Y; Yu L; Guo M; Huang B; Whangbo MH
    Nanoscale; 2012 Mar; 4(5):1592-7. PubMed ID: 22294210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Room-temperature Wurtzite ZnS nanocrystal growth on Zn finger-like peptide nanotubes by controlling their unfolding peptide structures.
    Banerjee IA; Yu L; Matsui H
    J Am Chem Soc; 2005 Nov; 127(46):16002-3. PubMed ID: 16287268
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Lower bound for the excitonic fine structure splitting in self-assembled quantum dots.
    Singh R; Bester G
    Phys Rev Lett; 2010 May; 104(19):196803. PubMed ID: 20866988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.