These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
320 related articles for article (PubMed ID: 25796259)
1. Surface thermodynamics of planar, cylindrical, and spherical vapour-liquid interfaces of water. Lau GV; Ford IJ; Hunt PA; Müller EA; Jackson G J Chem Phys; 2015 Mar; 142(11):114701. PubMed ID: 25796259 [TBL] [Abstract][Full Text] [Related]
2. Surface tension and long range corrections of cylindrical interfaces. Bourasseau E; Malfreyt P; Ghoufi A J Chem Phys; 2015 Dec; 143(23):234708. PubMed ID: 26696071 [TBL] [Abstract][Full Text] [Related]
3. Interfacial properties of liquid-vapor interfaces with planar, spherical, and cylindrical geometries in mean field. Segovia-López JG; Romero-Rochín V Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Feb; 73(2 Pt 1):021601. PubMed ID: 16605344 [TBL] [Abstract][Full Text] [Related]
4. Extension of the Test-Area methodology for calculating solid-fluid interfacial tensions in cylindrical geometry. Blas FJ; Mendiboure B J Chem Phys; 2013 Apr; 138(13):134701. PubMed ID: 23574246 [TBL] [Abstract][Full Text] [Related]
5. A perspective on the interfacial properties of nanoscopic liquid drops. Malijevský A; Jackson G J Phys Condens Matter; 2012 Nov; 24(46):464121. PubMed ID: 23114181 [TBL] [Abstract][Full Text] [Related]
6. A molecular dynamics study to determine the solid-liquid interfacial tension using test area simulation method (TASM). Nair AR; Sathian SP J Chem Phys; 2012 Aug; 137(8):084702. PubMed ID: 22938254 [TBL] [Abstract][Full Text] [Related]
7. Communications: Evidence for the role of fluctuations in the thermodynamics of nanoscale drops and the implications in computations of the surface tension. Sampayo JG; Malijevský A; Müller EA; de Miguel E; Jackson G J Chem Phys; 2010 Apr; 132(14):141101. PubMed ID: 20405977 [TBL] [Abstract][Full Text] [Related]
8. Test-area simulation method for the direct determination of the interfacial tension of systems with continuous or discontinuous potentials. Gloor GJ; Jackson G; Blas FJ; de Miguel E J Chem Phys; 2005 Oct; 123(13):134703. PubMed ID: 16223322 [TBL] [Abstract][Full Text] [Related]
9. Adsorption of acicular particles at liquid-fluid interfaces and the influence of the line tension. Dong L; Johnson DT Langmuir; 2005 Apr; 21(9):3838-49. PubMed ID: 15835945 [TBL] [Abstract][Full Text] [Related]
10. Correction to the interfacial tension by curvature radius: differences between droplets and bubbles. Castellanos AJ; Toro-Mendoza J; Garcia-Sucre M J Phys Chem B; 2009 Apr; 113(17):5891-6. PubMed ID: 19338313 [TBL] [Abstract][Full Text] [Related]
11. The pressure in interfaces having cylindrical geometry. Addington CK; Long Y; Gubbins KE J Chem Phys; 2018 Aug; 149(8):084109. PubMed ID: 30193498 [TBL] [Abstract][Full Text] [Related]
12. Effect of dispersive long-range corrections to the pressure tensor: the vapour-liquid interfacial properties of the Lennard-Jones system revisited. Martínez-Ruiz FJ; Blas FJ; Mendiboure B; Moreno-Ventas Bravo AI J Chem Phys; 2014 Nov; 141(18):184701. PubMed ID: 25399153 [TBL] [Abstract][Full Text] [Related]
13. On interfacial tension calculation from the test-area methodology in the grand canonical ensemble. Míguez JM; Piñeiro MM; Moreno-Ventas Bravo AI; Blas FJ J Chem Phys; 2012 Mar; 136(11):114707. PubMed ID: 22443790 [TBL] [Abstract][Full Text] [Related]
14. Excess equimolar radius of liquid drops. Horsch M; Hasse H; Shchekin AK; Agarwal A; Eckelsbach S; Vrabec J; Müller EA; Jackson G Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Mar; 85(3 Pt 1):031605. PubMed ID: 22587106 [TBL] [Abstract][Full Text] [Related]
15. Virial series for inhomogeneous fluids applied to the Lennard-Jones wall-fluid surface tension at planar and curved walls. Urrutia I; Paganini IE J Chem Phys; 2016 May; 144(17):174102. PubMed ID: 27155620 [TBL] [Abstract][Full Text] [Related]
16. Critical polyelectrolyte adsorption under confinement: planar slit, cylindrical pore, and spherical cavity. Cherstvy AG Biopolymers; 2012 May; 97(5):311-7. PubMed ID: 22241107 [TBL] [Abstract][Full Text] [Related]
17. Surfactant solutions and porous substrates: spreading and imbibition. Starov VM Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660 [TBL] [Abstract][Full Text] [Related]
18. Conceptual aspects of line tensions. Schimmele L; Napiórkowski M; Dietrich S J Chem Phys; 2007 Oct; 127(16):164715. PubMed ID: 17979379 [TBL] [Abstract][Full Text] [Related]
19. A self-consistent field study of a hydrocarbon droplet at the air-water interface. Hilz E; Leermakers FA; Vermeer AW Phys Chem Chem Phys; 2012 Apr; 14(14):4917-26. PubMed ID: 22395192 [TBL] [Abstract][Full Text] [Related]
20. Implications of interface conventions for morphometric thermodynamics. Reindl A; Bier M; Dietrich S Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Feb; 91(2):022406. PubMed ID: 25768517 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]