BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 25796485)

  • 1. Picosecond and Terahertz Perturbation of Interfacial Water and Electropermeabilization of Biological Membranes.
    Vernier PT; Levine ZA; Ho MC; Xiao S; Semenov I; Pakhomov AG
    J Membr Biol; 2015 Oct; 248(5):837-47. PubMed ID: 25796485
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electropore Formation in Mechanically Constrained Phospholipid Bilayers.
    Fernández ML; Risk MR; Vernier PT
    J Membr Biol; 2018 Apr; 251(2):237-245. PubMed ID: 29170842
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Terahertz Electric Field-Induced Membrane Electroporation by Molecular Dynamics Simulations.
    Tang J; Yin H; Ma J; Bo W; Yang Y; Xu J; Liu Y; Gong Y
    J Membr Biol; 2018 Dec; 251(5-6):681-693. PubMed ID: 30094474
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Permeabilizing Phospholipid Bilayers with Non-normal Electric Fields.
    Castellani F; Teissié J; Vernier PT
    J Membr Biol; 2018 Apr; 251(2):229-236. PubMed ID: 29094194
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interpretation of the molecular mechanism of the electroporation induced by symmetrical bipolar picosecond pulse trains.
    Tang J; Ma J; Guo L; Wang K; Yang Y; Bo W; Yang L; Wang Z; Jiang H; Wu Z; Zeng B; Gong Y
    Biochim Biophys Acta Biomembr; 2020 May; 1862(5):183213. PubMed ID: 32057755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interface water dynamics and porating electric fields for phospholipid bilayers.
    Ziegler MJ; Vernier PT
    J Phys Chem B; 2008 Oct; 112(43):13588-96. PubMed ID: 18837540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanosecond field alignment of head group and water dipoles in electroporating phospholipid bilayers.
    Vernier PT; Ziegler MJ
    J Phys Chem B; 2007 Nov; 111(45):12993-6. PubMed ID: 17949035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanoelectropulse-driven membrane perturbation and small molecule permeabilization.
    Vernier PT; Sun Y; Gundersen MA
    BMC Cell Biol; 2006 Oct; 7():37. PubMed ID: 17052354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The importance of membrane defects-lessons from simulations.
    Bennett WF; Tieleman DP
    Acc Chem Res; 2014 Aug; 47(8):2244-51. PubMed ID: 24892900
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoscale, electric field-driven water bridges in vacuum gaps and lipid bilayers.
    Ho MC; Levine ZA; Vernier PT
    J Membr Biol; 2013 Nov; 246(11):793-801. PubMed ID: 23644990
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanopore-facilitated, voltage-driven phosphatidylserine translocation in lipid bilayers--in cells and in silico.
    Vernier PT; Ziegler MJ; Sun Y; Gundersen MA; Tieleman DP
    Phys Biol; 2006 Nov; 3(4):233-47. PubMed ID: 17200599
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle of an electropore: field-dependent and field-independent steps in pore creation and annihilation.
    Levine ZA; Vernier PT
    J Membr Biol; 2010 Jul; 236(1):27-36. PubMed ID: 20623350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electric field-driven water dipoles: nanoscale architecture of electroporation.
    Tokman M; Lee JH; Levine ZA; Ho MC; Colvin ME; Vernier PT
    PLoS One; 2013; 8(4):e61111. PubMed ID: 23593404
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Simulation of Cell Membrane Deformation by Picosecond Intense Electric Pulse.
    Petrishia A; Sasikala M
    J Membr Biol; 2015 Dec; 248(6):1015-20. PubMed ID: 26054382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aqueous solutions at the interface with phospholipid bilayers.
    Berkowitz ML; Vácha R
    Acc Chem Res; 2012 Jan; 45(1):74-82. PubMed ID: 21770470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A molecular dynamic study of cholesterol rich lipid membranes: comparison of electroporation protocols.
    Casciola M; Bonhenry D; Liberti M; Apollonio F; Tarek M
    Bioelectrochemistry; 2014 Dec; 100():11-7. PubMed ID: 24731593
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect of electric field and lipid oxidation on the permeability of cell membranes.
    Yusupov M; Van der Paal J; Neyts EC; Bogaerts A
    Biochim Biophys Acta Gen Subj; 2017 Apr; 1861(4):839-847. PubMed ID: 28137619
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of the morphological transition of a phospholipid bilayer membrane in an external electric field via molecular dynamics simulation.
    Kong Z; Wang H; Liang L; Zhang Z; Ying S; Hu Q; Shen JW
    J Mol Model; 2017 Apr; 23(4):113. PubMed ID: 28289956
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Atomistic simulations of electroporation in water preembedded membranes.
    Sun S; Wong JT; Zhang TY
    J Phys Chem B; 2011 Nov; 115(45):13355-9. PubMed ID: 21962234
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Membrane Electroporation and Electropermeabilization: Mechanisms and Models.
    Kotnik T; Rems L; Tarek M; Miklavčič D
    Annu Rev Biophys; 2019 May; 48():63-91. PubMed ID: 30786231
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.