These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25796485)

  • 21. The contribution of lipid peroxidation to membrane permeability in electropermeabilization: A molecular dynamics study.
    Rems L; Viano M; Kasimova MA; Miklavčič D; Tarek M
    Bioelectrochemistry; 2019 Feb; 125():46-57. PubMed ID: 30265863
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The molecular basis of electroporation.
    Tieleman DP
    BMC Biochem; 2004 Jul; 5():10. PubMed ID: 15260890
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular dynamics simulations of lipid membrane electroporation.
    Delemotte L; Tarek M
    J Membr Biol; 2012 Sep; 245(9):531-43. PubMed ID: 22644388
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Self-organization of a stable pore structure in a phospholipid bilayer.
    Koshiyama K; Yano T; Kodama T
    Phys Rev Lett; 2010 Jul; 105(1):018105. PubMed ID: 20867485
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Simulations of transient membrane behavior in cells subjected to a high-intensity ultrashort electric pulse.
    Hu Q; Viswanadham S; Joshi RP; Schoenbach KH; Beebe SJ; Blackmore PF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 1):031914. PubMed ID: 15903466
    [TBL] [Abstract][Full Text] [Related]  

  • 27. High electrical field effects on cell membranes.
    Pliquett U; Joshi RP; Sridhara V; Schoenbach KH
    Bioelectrochemistry; 2007 May; 70(2):275-82. PubMed ID: 17123870
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Dye Transport through Bilayers Agrees with Lipid Electropore Molecular Dynamics.
    Sözer EB; Haldar S; Blank PS; Castellani F; Vernier PT; Zimmerberg J
    Biophys J; 2020 Nov; 119(9):1724-1734. PubMed ID: 33096018
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Electroporation of a lipid bilayer as a chemical reaction.
    Bier M; Gowrishankar TR; Chen W; Lee RC
    Bioelectromagnetics; 2004 Dec; 25(8):634-7. PubMed ID: 15515028
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Water order profiles on phospholipid/cholesterol membrane bilayer surfaces.
    Robinson D; Besley NA; O'Shea P; Hirst JD
    J Comput Chem; 2011 Sep; 32(12):2613-8. PubMed ID: 21633961
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electroporation threshold of POPC lipid bilayers with incorporated polyoxyethylene glycol (C12E8).
    Polak A; Velikonja A; Kramar P; Tarek M; Miklavčič D
    J Phys Chem B; 2015 Jan; 119(1):192-200. PubMed ID: 25495217
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular dynamics simulations of pore formation dynamics during the rupture process of a phospholipid bilayer caused by high-speed equibiaxial stretching.
    Koshiyama K; Wada S
    J Biomech; 2011 Jul; 44(11):2053-8. PubMed ID: 21658696
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Membrane destabilizations supporting electropermeabilization.
    Teissié J
    Cell Mol Biol Lett; 2002; 7(1):96-100. PubMed ID: 11944055
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simulations of nanopore formation and phosphatidylserine externalization in lipid membranes subjected to a high-intensity, ultrashort electric pulse.
    Hu Q; Joshi RP; Schoenbach KH
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031902. PubMed ID: 16241477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Undulation instability in a bilayer lipid membrane due to electric field interaction with lipid dipoles.
    Bingham RJ; Olmsted PD; Smye SW
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 May; 81(5 Pt 1):051909. PubMed ID: 20866263
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electric-driven membrane poration: A rationale for water role in the kinetics of pore formation.
    Marracino P; Caramazza L; Montagna M; Ghahri R; D'Abramo M; Liberti M; Apollonio F
    Bioelectrochemistry; 2022 Feb; 143():107987. PubMed ID: 34794113
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluations of a mechanistic hypothesis for the influence of extracellular ions on electroporation due to high-intensity, nanosecond pulsing.
    Sridhara V; Joshi RP
    Biochim Biophys Acta; 2014 Jul; 1838(7):1793-800. PubMed ID: 24680651
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Geometrical Characterization of an Electropore from Water Positional Fluctuations.
    Marracino P; Castellani F; Vernier PT; Liberti M; Apollonio F
    J Membr Biol; 2017 Feb; 250(1):11-19. PubMed ID: 27435217
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sandwiched graphene--membrane superstructures.
    Titov AV; Král P; Pearson R
    ACS Nano; 2010 Jan; 4(1):229-34. PubMed ID: 20025267
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Calcium and phosphatidylserine inhibit lipid electropore formation and reduce pore lifetime.
    Levine ZA; Vernier PT
    J Membr Biol; 2012 Oct; 245(10):599-610. PubMed ID: 22815071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.