These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
215 related articles for article (PubMed ID: 25796485)
41. On the molecular mechanisms implicated in the bipolar cancellation of membrane electroporation. Tang J; Wang S; Yang L; Wu Z; Jiang H; Zeng B; Gong Y Biochim Biophys Acta Biomembr; 2022 Feb; 1864(1):183811. PubMed ID: 34744023 [TBL] [Abstract][Full Text] [Related]
47. Effect of acetone accumulation on structure and dynamics of lipid membranes studied by molecular dynamics simulations. Posokhov YO; Kyrychenko A Comput Biol Chem; 2013 Oct; 46():23-31. PubMed ID: 23764528 [TBL] [Abstract][Full Text] [Related]
48. Molecular dynamics simulation of interlayer water embedded in phospholipid bilayer. Han WB; Kim SJ; An HH; Kim HS; Kim Y; Yoon CS Mater Sci Eng C Mater Biol Appl; 2014 Mar; 36():49-56. PubMed ID: 24433886 [TBL] [Abstract][Full Text] [Related]
49. Effects of dimethyl sulfoxide on lipid membrane electroporation. Fernández ML; Reigada R J Phys Chem B; 2014 Aug; 118(31):9306-12. PubMed ID: 25035931 [TBL] [Abstract][Full Text] [Related]
50. A molecular insight into the electro-transfer of small molecules through electropores driven by electric fields. Casciola M; Tarek M Biochim Biophys Acta; 2016 Oct; 1858(10):2278-2289. PubMed ID: 27018309 [TBL] [Abstract][Full Text] [Related]
51. Irreversible electroporation and apoptosis in human liver cancer cells induced by nanosecond electric pulses. Xiao D; Yao C; Liu H; Li C; Cheng J; Guo F; Tang L Bioelectromagnetics; 2013 Oct; 34(7):512-20. PubMed ID: 23740887 [TBL] [Abstract][Full Text] [Related]
52. Size-controlled nanopores in lipid membranes with stabilizing electric fields. Fernández ML; Risk M; Reigada R; Vernier PT Biochem Biophys Res Commun; 2012 Jun; 423(2):325-30. PubMed ID: 22659739 [TBL] [Abstract][Full Text] [Related]
53. Case for applying subnanosecond high-intensity, electrical pulses to biological cells. Joshi RP; Hu Q IEEE Trans Biomed Eng; 2011 Oct; 58(10):2860-6. PubMed ID: 21937300 [TBL] [Abstract][Full Text] [Related]
54. Numerical study of lipid translocation driven by nanoporation due to multiple high-intensity, ultrashort electrical pulses. Sridhara V; Joshi RP Biochim Biophys Acta; 2014 Mar; 1838(3):902-9. PubMed ID: 24239610 [TBL] [Abstract][Full Text] [Related]
55. LAMBADA and InflateGRO2: efficient membrane alignment and insertion of membrane proteins for molecular dynamics simulations. Schmidt TH; Kandt C J Chem Inf Model; 2012 Oct; 52(10):2657-69. PubMed ID: 22989154 [TBL] [Abstract][Full Text] [Related]
56. Structural and kinetic molecular dynamics study of electroporation in cholesterol-containing bilayers. Fernández ML; Marshall G; Sagués F; Reigada R J Phys Chem B; 2010 May; 114(20):6855-65. PubMed ID: 20429602 [TBL] [Abstract][Full Text] [Related]
57. Nontrivial behavior of water in the vicinity and inside lipid bilayers as probed by molecular dynamics simulations. Krylov NA; Pentkovsky VM; Efremov RG ACS Nano; 2013 Oct; 7(10):9428-42. PubMed ID: 24070369 [TBL] [Abstract][Full Text] [Related]
58. Electric field modulation in tissue electroporation with electrolytic and non-electrolytic additives. Ivorra A; Rubinsky B Bioelectrochemistry; 2007 May; 70(2):551-60. PubMed ID: 17350351 [TBL] [Abstract][Full Text] [Related]
59. Translocation of positively charged copoly(Lys/Tyr) across phospholipid membranes. Liu S; Shibata A; Ueno S; Huang Y; Wang Y; Li Y Biochem Biophys Res Commun; 2006 Jan; 339(3):761-8. PubMed ID: 16316626 [TBL] [Abstract][Full Text] [Related]
60. Insertion of glycophorin A, a transmembraneous protein, in lipid bilayers can be mediated by electropermeabilization. Raffy S; Teissie J Eur J Biochem; 1995 Jun; 230(2):722-32. PubMed ID: 7607245 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]