BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

297 related articles for article (PubMed ID: 25796616)

  • 1. Chimeras of channelrhodopsin-1 and -2 from Chlamydomonas reinhardtii exhibit distinctive light-induced structural changes from channelrhodopsin-2.
    Inaguma A; Tsukamoto H; Kato HE; Kimura T; Ishizuka T; Oishi S; Yawo H; Nureki O; Furutani Y
    J Biol Chem; 2015 May; 290(18):11623-34. PubMed ID: 25796616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Proton transfer reactions in the red light-activatable channelrhodopsin variant ReaChR and their relevance for its function.
    Kaufmann JCD; Krause BS; Grimm C; Ritter E; Hegemann P; Bartl FJ
    J Biol Chem; 2017 Aug; 292(34):14205-14216. PubMed ID: 28659342
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel.
    Nagel G; Szellas T; Huhn W; Kateriya S; Adeishvili N; Berthold P; Ollig D; Hegemann P; Bamberg E
    Proc Natl Acad Sci U S A; 2003 Nov; 100(24):13940-5. PubMed ID: 14615590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glu 87 of channelrhodopsin-1 causes pH-dependent color tuning and fast photocurrent inactivation.
    Tsunoda SP; Hegemann P
    Photochem Photobiol; 2009; 85(2):564-9. PubMed ID: 19192197
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Crystal structure of the channelrhodopsin light-gated cation channel.
    Kato HE; Zhang F; Yizhar O; Ramakrishnan C; Nishizawa T; Hirata K; Ito J; Aita Y; Tsukazaki T; Hayashi S; Hegemann P; Maturana AD; Ishitani R; Deisseroth K; Nureki O
    Nature; 2012 Jan; 482(7385):369-74. PubMed ID: 22266941
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomistic Study of Intramolecular Interactions in the Closed-State Channelrhodopsin Chimera, C1C2.
    VanGordon MR; Gyawali G; Rick SW; Rempe SB
    Biophys J; 2017 Mar; 112(5):943-952. PubMed ID: 28297653
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glutamate residue 90 in the predicted transmembrane domain 2 is crucial for cation flux through channelrhodopsin 2.
    Ruffert K; Himmel B; Lall D; Bamann C; Bamberg E; Betz H; Eulenburg V
    Biochem Biophys Res Commun; 2011 Jul; 410(4):737-43. PubMed ID: 21683688
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of engineered channelrhodopsin variants with improved properties and kinetics.
    Lin JY; Lin MZ; Steinbach P; Tsien RY
    Biophys J; 2009 Mar; 96(5):1803-14. PubMed ID: 19254539
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman and FTIR spectroscopic characterization of the closed and open states of channelrhodopsin-1.
    Muders V; Kerruth S; Lórenz-Fonfría VA; Bamann C; Heberle J; Schlesinger R
    FEBS Lett; 2014 Jun; 588(14):2301-6. PubMed ID: 24859039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular determinants differentiating photocurrent properties of two channelrhodopsins from chlamydomonas.
    Wang H; Sugiyama Y; Hikima T; Sugano E; Tomita H; Takahashi T; Ishizuka T; Yawo H
    J Biol Chem; 2009 Feb; 284(9):5685-96. PubMed ID: 19103605
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Channelrhodopsin unchained: structure and mechanism of a light-gated cation channel.
    Lórenz-Fonfría VA; Heberle J
    Biochim Biophys Acta; 2014 May; 1837(5):626-42. PubMed ID: 24212055
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple photocycles of channelrhodopsin.
    Hegemann P; Ehlenbeck S; Gradmann D
    Biophys J; 2005 Dec; 89(6):3911-8. PubMed ID: 16169986
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monitoring light-induced structural changes of Channelrhodopsin-2 by UV-visible and Fourier transform infrared spectroscopy.
    Ritter E; Stehfest K; Berndt A; Hegemann P; Bartl FJ
    J Biol Chem; 2008 Dec; 283(50):35033-41. PubMed ID: 18927082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton transfers in a channelrhodopsin-1 studied by Fourier transform infrared (FTIR) difference spectroscopy and site-directed mutagenesis.
    Ogren JI; Yi A; Mamaev S; Li H; Spudich JL; Rothschild KJ
    J Biol Chem; 2015 May; 290(20):12719-30. PubMed ID: 25802337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-induced helix movements in channelrhodopsin-2.
    Müller M; Bamann C; Bamberg E; Kühlbrandt W
    J Mol Biol; 2015 Jan; 427(2):341-9. PubMed ID: 25451024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adjacent channelrhodopsin-2 residues within transmembranes 2 and 7 regulate cation selectivity and distribution of the two open states.
    Richards R; Dempski RE
    J Biol Chem; 2017 May; 292(18):7314-7326. PubMed ID: 28302720
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conformational changes of channelrhodopsin-2.
    Radu I; Bamann C; Nack M; Nagel G; Bamberg E; Heberle J
    J Am Chem Soc; 2009 Jun; 131(21):7313-9. PubMed ID: 19422231
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pre-gating conformational changes in the ChETA variant of channelrhodopsin-2 monitored by nanosecond IR spectroscopy.
    Lórenz-Fonfría VA; Schultz BJ; Resler T; Schlesinger R; Bamann C; Bamberg E; Heberle J
    J Am Chem Soc; 2015 Feb; 137(5):1850-61. PubMed ID: 25584873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Channelrhodopsin-1 initiates phototaxis and photophobic responses in chlamydomonas by immediate light-induced depolarization.
    Berthold P; Tsunoda SP; Ernst OP; Mages W; Gradmann D; Hegemann P
    Plant Cell; 2008 Jun; 20(6):1665-77. PubMed ID: 18552201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Channelrhodopsin-1 Phosphorylation Changes with Phototactic Behavior and Responds to Physiological Stimuli in
    Böhm M; Boness D; Fantisch E; Erhard H; Frauenholz J; Kowalzyk Z; Marcinkowski N; Kateriya S; Hegemann P; Kreimer G
    Plant Cell; 2019 Apr; 31(4):886-910. PubMed ID: 30862615
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.