BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

92 related articles for article (PubMed ID: 25796740)

  • 21. A hybrid of ant colony optimization and minimization of metabolic adjustment to improve the production of succinic acid in Escherichia coli.
    Chong SK; Mohamad MS; Mohamed Salleh AH; Choon YW; Chong CK; Deris S
    Comput Biol Med; 2014 Jun; 49():74-82. PubMed ID: 24763079
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-Scale
    Ando D; García Martín H
    Methods Mol Biol; 2019; 1859():317-345. PubMed ID: 30421239
    [TBL] [Abstract][Full Text] [Related]  

  • 23. MOST: a software environment for constraint-based metabolic modeling and strain design.
    Kelley JJ; Lane A; Li X; Mutthoju B; Maor S; Egen D; Lun DS
    Bioinformatics; 2015 Feb; 31(4):610-1. PubMed ID: 25677126
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fast computation of minimal cut sets in metabolic networks with a Berge algorithm that utilizes binary bit pattern trees.
    Jungreuthmayer C; Beurton-Aimar M; Zanghellini J
    IEEE/ACM Trans Comput Biol Bioinform; 2013; 10(5):1329-33. PubMed ID: 24062540
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Designing an Escherichia coli Strain for Phenylalanine Overproduction by Metabolic Engineering.
    Tyagi N; Saini D; Guleria R; Mukherjee KJ
    Mol Biotechnol; 2017 May; 59(4-5):168-178. PubMed ID: 28374116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evolutionary programming as a platform for in silico metabolic engineering.
    Patil KR; Rocha I; Förster J; Nielsen J
    BMC Bioinformatics; 2005 Dec; 6():308. PubMed ID: 16375763
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improved production of N-acetylglucosamine in Saccharomyces cerevisiae by reducing glycolytic flux.
    Lee SW; Oh MK
    Biotechnol Bioeng; 2016 Nov; 113(11):2524-8. PubMed ID: 27217143
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Computational analysis of phenotypic space in heterologous polyketide biosynthesis--applications to Escherichia coli, Bacillus subtilis, and Saccharomyces cerevisiae.
    Boghigian BA; Lee K; Pfeifer BA
    J Theor Biol; 2010 Jan; 262(2):197-207. PubMed ID: 19833139
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Elucidating the adaptation and temporal coordination of metabolic pathways using in-silico evolution.
    Gottstein W; Müller S; Herzel H; Steuer R
    Biosystems; 2014 Mar; 117():68-76. PubMed ID: 24440082
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Flux Balance Analysis with Objective Function Defined by Proteomics Data-Metabolism of Mycobacterium tuberculosis Exposed to Mefloquine.
    Montezano D; Meek L; Gupta R; Bermudez LE; Bermudez JC
    PLoS One; 2015; 10(7):e0134014. PubMed ID: 26218987
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Resource allocation in metabolic networks: kinetic optimization and approximations by FBA.
    Müller S; Regensburger G; Steuer R
    Biochem Soc Trans; 2015 Dec; 43(6):1195-200. PubMed ID: 26614660
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Prediction of metabolic flux distribution from gene expression data based on the flux minimization principle.
    Song HS; Reifman J; Wallqvist A
    PLoS One; 2014; 9(11):e112524. PubMed ID: 25397773
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmid-encoded biosynthetic genes alleviate metabolic disadvantages while increasing glucose conversion to shikimate in an engineered Escherichia coli strain.
    Rodriguez A; Martínez JA; Millard P; Gosset G; Portais JC; Létisse F; Bolivar F
    Biotechnol Bioeng; 2017 Jun; 114(6):1319-1330. PubMed ID: 28186321
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genetic network driven control of PHBV copolymer composition.
    Iadevaia S; Mantzaris NV
    J Biotechnol; 2006 Mar; 122(1):99-121. PubMed ID: 16219380
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of genome-scale microbial models for metabolic engineering.
    Patil KR; Akesson M; Nielsen J
    Curr Opin Biotechnol; 2004 Feb; 15(1):64-9. PubMed ID: 15102469
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization.
    Burgard AP; Pharkya P; Maranas CD
    Biotechnol Bioeng; 2003 Dec; 84(6):647-57. PubMed ID: 14595777
    [TBL] [Abstract][Full Text] [Related]  

  • 37. CycleFreeFlux: efficient removal of thermodynamically infeasible loops from flux distributions.
    Desouki AA; Jarre F; Gelius-Dietrich G; Lercher MJ
    Bioinformatics; 2015 Jul; 31(13):2159-65. PubMed ID: 25701569
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative intracellular flux modeling and applications in biotherapeutic development and production using CHO cell cultures.
    Huang Z; Lee DY; Yoon S
    Biotechnol Bioeng; 2017 Dec; 114(12):2717-2728. PubMed ID: 28710856
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Formic acid as a secondary substrate for succinic acid production by metabolically engineered Mannheimia succiniciproducens.
    Ahn JH; Bang J; Kim WJ; Lee SY
    Biotechnol Bioeng; 2017 Dec; 114(12):2837-2847. PubMed ID: 28926680
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Microbial catalysis and metabolic engineering.
    van Dijken JP; Luli GM
    Appl Biochem Biotechnol; 2005; 121-124():375-7. PubMed ID: 15917614
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.