These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 25797010)

  • 1. Uncovering the triggers for GPCR activation using solid-state NMR spectroscopy.
    Kimata N; Reeves PJ; Smith SO
    J Magn Reson; 2015 Apr; 253():111-8. PubMed ID: 25797010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Agonist-induced conformational changes in bovine rhodopsin: insight into activation of G-protein-coupled receptors.
    Bhattacharya S; Hall SE; Vaidehi N
    J Mol Biol; 2008 Oct; 382(2):539-55. PubMed ID: 18638482
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relevance of rhodopsin studies for GPCR activation.
    Deupi X
    Biochim Biophys Acta; 2014 May; 1837(5):674-82. PubMed ID: 24041646
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Magic angle spinning NMR of G protein-coupled receptors.
    Chandler B; Todd L; Smith SO
    Prog Nucl Magn Reson Spectrosc; 2022 Feb; 128():25-43. PubMed ID: 35282868
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray structure breakthroughs in the GPCR transmembrane region.
    Topiol S; Sabio M
    Biochem Pharmacol; 2009 Jul; 78(1):11-20. PubMed ID: 19447219
    [TBL] [Abstract][Full Text] [Related]  

  • 6. G-protein-coupled receptor structure, ligand binding and activation as studied by solid-state NMR spectroscopy.
    Ding X; Zhao X; Watts A
    Biochem J; 2013 Mar; 450(3):443-57. PubMed ID: 23445222
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of hydrophobic amino acids in the structure and function of the rhodopsin family of G protein-coupled receptors.
    Caltabiano G; Gonzalez A; Cordomí A; Campillo M; Pardo L
    Methods Enzymol; 2013; 520():99-115. PubMed ID: 23332697
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selective interface detection: mapping binding site contacts in membrane proteins by NMR spectroscopy.
    Kiihne SR; Creemers AF; de Grip WJ; Bovee-Geurts PH; Lugtenburg J; de Groot HJ
    J Am Chem Soc; 2005 Apr; 127(16):5734-5. PubMed ID: 15839640
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupling of retinal isomerization to the activation of rhodopsin.
    Patel AB; Crocker E; Eilers M; Hirshfeld A; Sheves M; Smith SO
    Proc Natl Acad Sci U S A; 2004 Jul; 101(27):10048-53. PubMed ID: 15220479
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A G protein-coupled receptor at work: the rhodopsin model.
    Hofmann KP; Scheerer P; Hildebrand PW; Choe HW; Park JH; Heck M; Ernst OP
    Trends Biochem Sci; 2009 Nov; 34(11):540-52. PubMed ID: 19836958
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Magic angle spinning nuclear magnetic resonance spectroscopy of G protein-coupled receptors.
    Goncalves J; Eilers M; South K; Opefi CA; Laissue P; Reeves PJ; Smith SO
    Methods Enzymol; 2013; 522():365-89. PubMed ID: 23374193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vibrational resonance, allostery, and activation in rhodopsin-like G protein-coupled receptors.
    Woods KN; Pfeffer J; Dutta A; Klein-Seetharaman J
    Sci Rep; 2016 Nov; 6():37290. PubMed ID: 27849063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observations of light-induced structural changes of retinal within rhodopsin.
    Gröbner G; Burnett IJ; Glaubitz C; Choi G; Mason AJ; Watts A
    Nature; 2000 Jun; 405(6788):810-3. PubMed ID: 10866205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequential structural changes in rhodopsin occurring upon photoactivation.
    Kimata N; Pope A; Rashid D; Reeves PJ; Smith SO
    Methods Mol Biol; 2015; 1271():159-71. PubMed ID: 25697523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation.
    Peeters MC; van Westen GJ; Li Q; IJzerman AP
    Trends Pharmacol Sci; 2011 Jan; 32(1):35-42. PubMed ID: 21075459
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structure of the ligand-free G-protein-coupled receptor opsin.
    Park JH; Scheerer P; Hofmann KP; Choe HW; Ernst OP
    Nature; 2008 Jul; 454(7201):183-7. PubMed ID: 18563085
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of rhodopsin dynamics in its signaling state by solid-state deuterium NMR spectroscopy.
    Struts AV; Chawla U; Perera SM; Brown MF
    Methods Mol Biol; 2015; 1271():133-58. PubMed ID: 25697522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Internal hydration increases during activation of the G-protein-coupled receptor rhodopsin.
    Grossfield A; Pitman MC; Feller SE; Soubias O; Gawrisch K
    J Mol Biol; 2008 Aug; 381(2):478-86. PubMed ID: 18585736
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A concept for G protein activation by G protein-coupled receptor dimers: the transducin/rhodopsin interface.
    Filipek S; Krzysko KA; Fotiadis D; Liang Y; Saperstein DA; Engel A; Palczewski K
    Photochem Photobiol Sci; 2004 Jun; 3(6):628-38. PubMed ID: 15170495
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of class A and D G protein-coupled receptors: common features in structure and activation.
    Eilers M; Hornak V; Smith SO; Konopka JB
    Biochemistry; 2005 Jun; 44(25):8959-75. PubMed ID: 15966721
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.