These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
317 related articles for article (PubMed ID: 25797030)
21. Activin A stimulates AKR1C3 expression and growth in human prostate cancer. Hofland J; van Weerden WM; Steenbergen J; Dits NF; Jenster G; de Jong FH Endocrinology; 2012 Dec; 153(12):5726-34. PubMed ID: 23024260 [TBL] [Abstract][Full Text] [Related]
22. Antisense oligonucleotide targeting of insulin-like growth factor-1 receptor (IGF-1R) in prostate cancer. Furukawa J; Wraight CJ; Freier SM; Peralta E; Atley LM; Monia BP; Gleave ME; Cox ME Prostate; 2010 Feb; 70(2):206-18. PubMed ID: 19790231 [TBL] [Abstract][Full Text] [Related]
23. Prostate cancer characteristics associated with response to pre-receptor targeting of the androgen axis. Mostaghel EA; Morgan A; Zhang X; Marck BT; Xia J; Hunter-Merrill R; Gulati R; Plymate S; Vessella RL; Corey E; Higano CS; Matsumoto AM; Montgomery RB; Nelson PS PLoS One; 2014; 9(10):e111545. PubMed ID: 25356728 [TBL] [Abstract][Full Text] [Related]
24. SRD5A gene polymorphism in Japanese men predicts prognosis of metastatic prostate cancer with androgen-deprivation therapy. Shiota M; Fujimoto N; Yokomizo A; Takeuchi A; Itsumi M; Inokuchi J; Tatsugami K; Uchiumi T; Naito S Eur J Cancer; 2015 Sep; 51(14):1962-9. PubMed ID: 26169017 [TBL] [Abstract][Full Text] [Related]
25. ACSL3 promotes intratumoral steroidogenesis in prostate cancer cells. Migita T; Takayama KI; Urano T; Obinata D; Ikeda K; Soga T; Takahashi S; Inoue S Cancer Sci; 2017 Oct; 108(10):2011-2021. PubMed ID: 28771887 [TBL] [Abstract][Full Text] [Related]
26. The insulin-like growth factor axis and prostate cancer: lessons from the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Kaplan PJ; Mohan S; Cohen P; Foster BA; Greenberg NM Cancer Res; 1999 May; 59(9):2203-9. PubMed ID: 10232609 [TBL] [Abstract][Full Text] [Related]
27. Discovery of 2-methyl-1-{1-[(5-methyl-1H-indol-2-yl)carbonyl]piperidin-4-yl}propan-2-ol: a novel, potent and selective type 5 17β-hydroxysteroid dehydrogenase inhibitor. Watanabe K; Kakefuda A; Yasuda M; Enjo K; Kikuchi A; Furutani T; Naritomi Y; Otsuka Y; Okada M; Ohta M Bioorg Med Chem; 2013 Sep; 21(17):5261-70. PubMed ID: 23845281 [TBL] [Abstract][Full Text] [Related]
28. Pomegranate extracts impact the androgen biosynthesis pathways in prostate cancer models in vitro and in vivo. Ming DS; Pham S; Deb S; Chin MY; Kharmate G; Adomat H; Beheshti EH; Locke J; Guns ET J Steroid Biochem Mol Biol; 2014 Sep; 143():19-28. PubMed ID: 24565566 [TBL] [Abstract][Full Text] [Related]
29. Abiraterone inhibits 3β-hydroxysteroid dehydrogenase: a rationale for increasing drug exposure in castration-resistant prostate cancer. Li R; Evaul K; Sharma KK; Chang KH; Yoshimoto J; Liu J; Auchus RJ; Sharifi N Clin Cancer Res; 2012 Jul; 18(13):3571-9. PubMed ID: 22753664 [TBL] [Abstract][Full Text] [Related]
30. Nuclear Receptor LRH-1 Functions to Promote Castration-Resistant Growth of Prostate Cancer via Its Promotion of Intratumoral Androgen Biosynthesis. Xiao L; Wang Y; Xu K; Hu H; Xu Z; Wu D; Wang Z; You W; Ng CF; Yu S; Chan FL Cancer Res; 2018 May; 78(9):2205-2218. PubMed ID: 29438990 [TBL] [Abstract][Full Text] [Related]
31. Arachidonic acid activation of intratumoral steroid synthesis during prostate cancer progression to castration resistance. Locke JA; Guns ES; Lehman ML; Ettinger S; Zoubeidi A; Lubik A; Margiotti K; Fazli L; Adomat H; Wasan KM; Gleave ME; Nelson CC Prostate; 2010 Feb; 70(3):239-51. PubMed ID: 19790237 [TBL] [Abstract][Full Text] [Related]
32. Mesoporous silica nanoparticles combined with AKR1C3 siRNA inhibited the growth of castration-resistant prostate cancer by suppressing androgen synthesis in vitro and in vivo. Chen J; Yang Y; Xu D; Li J; Wu S; Jiang Y; Wang C; Yang Z; Zhao L Biochem Biophys Res Commun; 2021 Feb; 540():83-89. PubMed ID: 33450484 [TBL] [Abstract][Full Text] [Related]
33. Increased expression of type 2 3alpha-hydroxysteroid dehydrogenase/type 5 17beta-hydroxysteroid dehydrogenase (AKR1C3) and its relationship with androgen receptor in prostate carcinoma. Fung KM; Samara EN; Wong C; Metwalli A; Krlin R; Bane B; Liu CZ; Yang JT; Pitha JV; Culkin DJ; Kropp BP; Penning TM; Lin HK Endocr Relat Cancer; 2006 Mar; 13(1):169-80. PubMed ID: 16601286 [TBL] [Abstract][Full Text] [Related]
34. NE-10 neuroendocrine cancer promotes the LNCaP xenograft growth in castrated mice. Jin RJ; Wang Y; Masumori N; Ishii K; Tsukamoto T; Shappell SB; Hayward SW; Kasper S; Matusik RJ Cancer Res; 2004 Aug; 64(15):5489-95. PubMed ID: 15289359 [TBL] [Abstract][Full Text] [Related]
35. SOCS2 mediates the cross talk between androgen and growth hormone signaling in prostate cancer. Iglesias-Gato D; Chuan YC; Wikström P; Augsten S; Jiang N; Niu Y; Seipel A; Danneman D; Vermeij M; Fernandez-Perez L; Jenster G; Egevad L; Norstedt G; Flores-Morales A Carcinogenesis; 2014 Jan; 35(1):24-33. PubMed ID: 24031028 [TBL] [Abstract][Full Text] [Related]
36. Elevated AKR1C3 expression promotes prostate cancer cell survival and prostate cell-mediated endothelial cell tube formation: implications for prostate cancer progression. Dozmorov MG; Azzarello JT; Wren JD; Fung KM; Yang Q; Davis JS; Hurst RE; Culkin DJ; Penning TM; Lin HK BMC Cancer; 2010 Dec; 10():672. PubMed ID: 21134280 [TBL] [Abstract][Full Text] [Related]
37. The prostatic environment suppresses growth of androgen-independent prostate cancer xenografts: an effect influenced by testosterone. Jennbacken K; Gustavsson H; Tesan T; Horn M; Vallbo C; Welén K; Damber JE Prostate; 2009 Aug; 69(11):1164-75. PubMed ID: 19399749 [TBL] [Abstract][Full Text] [Related]
38. Canonical androstenedione reduction is the predominant source of signaling androgens in hormone-refractory prostate cancer. Fankhauser M; Tan Y; Macintyre G; Haviv I; Hong MK; Nguyen A; Pedersen JS; Costello AJ; Hovens CM; Corcoran NM Clin Cancer Res; 2014 Nov; 20(21):5547-57. PubMed ID: 24771644 [TBL] [Abstract][Full Text] [Related]
39. Serum prostate specific antigen levels in mice bearing human prostate LNCaP tumors are determined by tumor volume and endocrine and growth factors. Gleave ME; Hsieh JT; Wu HC; von Eschenbach AC; Chung LW Cancer Res; 1992 Mar; 52(6):1598-605. PubMed ID: 1371718 [TBL] [Abstract][Full Text] [Related]
40. Carbidopa enhances antitumoral activity of bicalutamide on the androgen receptor-axis in castration-resistant prostate tumors. Thomas C; Wafa LA; Lamoureux F; Cheng H; Fazli L; Gleave ME; Rennie PS Prostate; 2012 Jun; 72(8):875-85. PubMed ID: 22072572 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]