These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 2579711)

  • 21. Use-dependent block of the voltage-gated Na(+) channel by tetrodotoxin and saxitoxin: effect of pore mutations that change ionic selectivity.
    Huang CJ; Schild L; Moczydlowski EG
    J Gen Physiol; 2012 Oct; 140(4):435-54. PubMed ID: 23008436
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Use-dependent block of sodium channels in frog myelinated nerve by tetrodotoxin and saxitoxin at negative holding potentials.
    Lönnendonker U
    Biochim Biophys Acta; 1989 Oct; 985(2):153-60. PubMed ID: 2553115
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Comparative changes of levels of nitrendipine Ca2+ channels, of tetrodotoxin-sensitive Na+ channels and of ouabain-sensitive (Na+ + K+)-ATPase following denervation of rat and chick skeletal muscle.
    Schmid A; Kazazoglou T; Renaud JF; Lazdunski M
    FEBS Lett; 1984 Jun; 172(1):114-8. PubMed ID: 6329821
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Kinetics of TTX-STX block of sodium channels.
    Ulbricht W; Wagner HH; Schmidtmayer J
    Ann N Y Acad Sci; 1986; 479():68-83. PubMed ID: 2434009
    [No Abstract]   [Full Text] [Related]  

  • 25. Saxitoxin and tetrodotoxin. Electrostatic effects on sodium channel gating current in crayfish axons.
    Heggeness ST; Starkus JG
    Biophys J; 1986 Mar; 49(3):629-43. PubMed ID: 2421792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Voltage clamp analysis of tetrodotoxin-sensitive and -insensitive sodium channels in rat muscle cells developing in vitro.
    Gonoi T; Sherman SJ; Catterall WA
    J Neurosci; 1985 Sep; 5(9):2559-64. PubMed ID: 2411888
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tetrodotoxin-sensitive and tetrodotoxin-resistant Na+ channels differ in their sensitivity to Cd2+ and Zn2+.
    Frelin C; Cognard C; Vigne P; Lazdunski M
    Eur J Pharmacol; 1986 Mar; 122(2):245-50. PubMed ID: 2423344
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Expression and distribution of sodium channels in short- and long-term denervated rodent skeletal muscles.
    Lupa MT; Krzemien DM; Schaller KL; Caldwell JH
    J Physiol; 1995 Feb; 483 ( Pt 1)(Pt 1):109-18. PubMed ID: 7776226
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Brain extract induces the tetrodotoxin-sensitive action potentials in a rat skeletal muscle cell line (L6).
    Yamazaki S; Satoh T; Kano M
    Brain Res; 1984 Apr; 315(2):251-6. PubMed ID: 6326971
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characteristics of saxitoxin binding to the sodium channel of sarcolemma isolated from rat skeletal muscle.
    Barchi RL; Weigele JB
    J Physiol; 1979 Oct; 295():383-96. PubMed ID: 42783
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An integrated view of the molecular toxinology of sodium channel gating in excitable cells.
    Strichartz G; Rando T; Wang GK
    Annu Rev Neurosci; 1987; 10():237-67. PubMed ID: 2436544
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The rates of saxitoxin action and of saxitoxin-tetrodotoxin interaction at the node of Ranvier.
    Wagner HH; Ulbricht W
    Pflugers Arch; 1975 Sep; 359(4):297-315. PubMed ID: 241053
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Acetylcholine receptors and sodium channels in denervated and botulinum-toxin-treated adult rat muscle.
    Bambrick L; Gordon T
    J Physiol; 1987 Jan; 382():69-86. PubMed ID: 2442368
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Developmental appearance of sodium channel subtypes in rat skeletal muscle cultures.
    Haimovich B; Tanaka JC; Barchi RL
    J Neurochem; 1986 Oct; 47(4):1148-53. PubMed ID: 2427654
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Structural determinants of the affinity of saxitoxin for neuronal sodium channels. Electrophysiological studies on frog peripheral nerve.
    Strichartz G
    J Gen Physiol; 1984 Aug; 84(2):281-305. PubMed ID: 6092517
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Na+ channels with binding sites of high and low affinity for tetrodotoxin in different excitable and non-excitable cells.
    Lombet A; Frelin C; Renaud JF; Lazdunski M
    Eur J Biochem; 1982 May; 124(1):199-203. PubMed ID: 6282588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The interaction of sea anemone and scorpion neurotoxins with tetrodotoxin-resistant Na+ channels in rat myoblasts. A comparison with Na+ channels in other excitable and non-excitable cells.
    Frelin C; Vigne P; Schweitz H; Lazdunski M
    Mol Pharmacol; 1984 Jul; 26(1):70-4. PubMed ID: 6146926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of various cations and anions on the action of tetrodotoxin and saxitoxin on frog myelinated nerve fibers.
    Grissmer S
    Pflugers Arch; 1984 Dec; 402(4):353-9. PubMed ID: 6335243
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Use-dependent block with tetrodotoxin and saxitoxin at frog Ranvier nodes. I. Intrinsic channel and toxin parameters.
    Lönnendonker U
    Eur Biophys J; 1991; 20(3):135-41. PubMed ID: 1660395
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of Na+ and Li+ ions on the kinetics of sodium channel block by tetrodotoxin and saxitoxin.
    Hansen G; Ulbricht W
    Pflugers Arch; 1991 Dec; 419(6):588-95. PubMed ID: 1664935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.