These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
180 related articles for article (PubMed ID: 25797166)
1. Improvement of efficiency in the enzymatic synthesis of lactulose palmitate. Bernal C; Illanes A; Wilson L J Agric Food Chem; 2015 Apr; 63(14):3716-24. PubMed ID: 25797166 [TBL] [Abstract][Full Text] [Related]
2. Heterofunctional hydrophilic-hydrophobic porous silica as support for multipoint covalent immobilization of lipases: application to lactulose palmitate synthesis. Bernal C; Illanes A; Wilson L Langmuir; 2014 Apr; 30(12):3557-66. PubMed ID: 24621332 [TBL] [Abstract][Full Text] [Related]
3. Lipase from Solvent-Tolerant Pseudomonas sp. DMVR46 Strain Adsorb on Multiwalled Carbon Nanotubes: Application for Enzymatic Biotransformation in Organic Solvents. Vrutika P; Datta M Appl Biochem Biotechnol; 2015 Nov; 177(6):1313-26. PubMed ID: 26329889 [TBL] [Abstract][Full Text] [Related]
4. Immobilization of Pseudomonas stutzeri lipase for the transesterification of wood sterols with fatty acid esters. Fauré N; Illanes A Appl Biochem Biotechnol; 2011 Nov; 165(5-6):1332-41. PubMed ID: 21887523 [TBL] [Abstract][Full Text] [Related]
5. Hierarchical meso-macroporous silica grafted with glyoxyl groups: opportunities for covalent immobilization of enzymes. Bernal C; Urrutia P; Illanes A; Wilson L N Biotechnol; 2013 Jun; 30(5):500-6. PubMed ID: 23416689 [TBL] [Abstract][Full Text] [Related]
6. Selective and eco-friendly synthesis of lipoaminoacid-based surfactants for food, using immobilized lipase and protease biocatalysts. Bernal C; Guzman F; Illanes A; Wilson L Food Chem; 2018 Jan; 239():189-195. PubMed ID: 28873558 [TBL] [Abstract][Full Text] [Related]
7. Immobilized Lipases on Functionalized Silica Particles as Potential Biocatalysts for the Synthesis of Fructose Oleate in an Organic Solvent/Water System. Vescovi V; Giordano RL; Mendes AA; Tardioli PW Molecules; 2017 Jan; 22(2):. PubMed ID: 28146090 [TBL] [Abstract][Full Text] [Related]
8. Synthesis with Immobilized Lipases and Downstream Processing of Ascorbyl Palmitate. Tufiño C; Bernal C; Ottone C; Romero O; Illanes A; Wilson L Molecules; 2019 Sep; 24(18):. PubMed ID: 31491845 [TBL] [Abstract][Full Text] [Related]
9. Immobilization of lipase from Pseudomonas fluorescens on glyoxyl-octyl-agarose beads: Improved stability and reusability. Rios NS; Mendez-Sanchez C; Arana-Peña S; Rueda N; Ortiz C; Gonçalves LRB; Fernandez-Lafuente R Biochim Biophys Acta Proteins Proteom; 2019 Sep; 1867(9):741-747. PubMed ID: 31202001 [TBL] [Abstract][Full Text] [Related]
10. Immobilization of Lipases on Heterofunctional Octyl-Glyoxyl Agarose Supports: Improved Stability and Prevention of the Enzyme Desorption. Rueda N; Dos Santos JC; Torres R; Ortiz C; Barbosa O; Fernandez-Lafuente R Methods Enzymol; 2016; 571():73-85. PubMed ID: 27112395 [TBL] [Abstract][Full Text] [Related]
11. Protic ionic liquid as additive on lipase immobilization using silica sol-gel. de Souza RL; de Faria EL; Figueiredo RT; Freitas Ldos S; Iglesias M; Mattedi S; Zanin GM; dos Santos OA; Coutinho JA; Lima ÁS; Soares CM Enzyme Microb Technol; 2013 Mar; 52(3):141-50. PubMed ID: 23410924 [TBL] [Abstract][Full Text] [Related]
12. Synthesis of 2-Ethylhexyl Palmitate Catalyzed by Enzyme Under Microwave. Wang L; Zhang Y; Zhang Y; Zheng L; Huang H; Wang Z Appl Biochem Biotechnol; 2018 May; 185(1):347-356. PubMed ID: 29152693 [TBL] [Abstract][Full Text] [Related]
13. Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester. Temoçin Z J Biomater Sci Polym Ed; 2013; 24(14):1618-35. PubMed ID: 23574345 [TBL] [Abstract][Full Text] [Related]
14. Immobilization of Yarrowia lipolytica lipase--a comparison of stability of physical adsorption and covalent attachment techniques. Cunha AG; Fernández-Lorente G; Bevilaqua JV; Destain J; Paiva LM; Freire DM; Fernández-Lafuente R; Guisán JM Appl Biochem Biotechnol; 2008 Mar; 146(1-3):49-56. PubMed ID: 18421586 [TBL] [Abstract][Full Text] [Related]
15. The β-galactosidase immobilization protocol determines its performance as catalysts in the kinetically controlled synthesis of lactulose. Neto CACG; Silva NCGE; de Oliveira Costa T; de Albuquerque TL; Gonçalves LRB; Fernandez-Lafuente R; Rocha MVP Int J Biol Macromol; 2021 Apr; 176():468-478. PubMed ID: 33592268 [TBL] [Abstract][Full Text] [Related]
16. Characterization and catalytic properties of free and silica-bound lipase: a comparative study. Narwal SK; Saun NK; Gupta R J Oleo Sci; 2014; 63(6):599-605. PubMed ID: 24829134 [TBL] [Abstract][Full Text] [Related]
17. Optimisation of synthesis of oligosaccharides derived from lactulose (fructosyl-galacto-oligosaccharides) with β-galactosidases of different origin. Guerrero C; Vera C; Illanes A Food Chem; 2013 Jun; 138(4):2225-32. PubMed ID: 23497880 [TBL] [Abstract][Full Text] [Related]
18. Immobilized Pseudomonas cepacia lipase for biodiesel fuel production from soybean oil. Noureddini H; Gao X; Philkana RS Bioresour Technol; 2005 May; 96(7):769-77. PubMed ID: 15607189 [TBL] [Abstract][Full Text] [Related]
19. Covalent attachment of lipases on glyoxyl-agarose beads: application in fruit flavor and biodiesel synthesis. Mendes AA; de Castro HF; Giordano RL Int J Biol Macromol; 2014 Sep; 70():78-85. PubMed ID: 24979527 [TBL] [Abstract][Full Text] [Related]
20. Analysis of Aspergillus sp. lipase immobilization for the application in organic synthesis. Gricajeva A; Kazlauskas S; Kalėdienė L; Bendikienė V Int J Biol Macromol; 2018 Mar; 108():1165-1175. PubMed ID: 29113890 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]