These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 25797169)
1. Deciphering the Roles of Multicomponent Recognition Signals by the AAA+ Unfoldase ClpX. Ling L; MontaƱo SP; Sauer RT; Rice PA; Baker TA J Mol Biol; 2015 Sep; 427(18):2966-82. PubMed ID: 25797169 [TBL] [Abstract][Full Text] [Related]
2. Unique contacts direct high-priority recognition of the tetrameric Mu transposase-DNA complex by the AAA+ unfoldase ClpX. Abdelhakim AH; Oakes EC; Sauer RT; Baker TA Mol Cell; 2008 Apr; 30(1):39-50. PubMed ID: 18406325 [TBL] [Abstract][Full Text] [Related]
3. Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase. Burton BM; Baker TA Protein Sci; 2005 Aug; 14(8):1945-54. PubMed ID: 16046622 [TBL] [Abstract][Full Text] [Related]
4. The AAA+ ClpX machine unfolds a keystone subunit to remodel the Mu transpososome. Abdelhakim AH; Sauer RT; Baker TA Proc Natl Acad Sci U S A; 2010 Feb; 107(6):2437-42. PubMed ID: 20133746 [TBL] [Abstract][Full Text] [Related]
5. Diverse pore loops of the AAA+ ClpX machine mediate unassisted and adaptor-dependent recognition of ssrA-tagged substrates. Martin A; Baker TA; Sauer RT Mol Cell; 2008 Feb; 29(4):441-50. PubMed ID: 18313382 [TBL] [Abstract][Full Text] [Related]
6. Pore loops of the AAA+ ClpX machine grip substrates to drive translocation and unfolding. Martin A; Baker TA; Sauer RT Nat Struct Mol Biol; 2008 Nov; 15(11):1147-51. PubMed ID: 18931677 [TBL] [Abstract][Full Text] [Related]
8. Large nucleotide-dependent movement of the N-terminal domain of the ClpX chaperone. Thibault G; Tsitrin Y; Davidson T; Gribun A; Houry WA EMBO J; 2006 Jul; 25(14):3367-76. PubMed ID: 16810315 [TBL] [Abstract][Full Text] [Related]
9. Distinct static and dynamic interactions control ATPase-peptidase communication in a AAA+ protease. Martin A; Baker TA; Sauer RT Mol Cell; 2007 Jul; 27(1):41-52. PubMed ID: 17612489 [TBL] [Abstract][Full Text] [Related]
10. Two peptide sequences can function cooperatively to facilitate binding and unfolding by ClpA and degradation by ClpAP. Hoskins JR; Wickner S Proc Natl Acad Sci U S A; 2006 Jan; 103(4):909-14. PubMed ID: 16410355 [TBL] [Abstract][Full Text] [Related]
11. Assaying the kinetics of protein denaturation catalyzed by AAA+ unfolding machines and proteases. Baytshtok V; Baker TA; Sauer RT Proc Natl Acad Sci U S A; 2015 Apr; 112(17):5377-82. PubMed ID: 25870262 [TBL] [Abstract][Full Text] [Related]
12. Specificity in substrate and cofactor recognition by the N-terminal domain of the chaperone ClpX. Thibault G; Yudin J; Wong P; Tsitrin V; Sprangers R; Zhao R; Houry WA Proc Natl Acad Sci U S A; 2006 Nov; 103(47):17724-9. PubMed ID: 17090685 [TBL] [Abstract][Full Text] [Related]
13. The Mycobacterium tuberculosis ClpP1P2 Protease Interacts Asymmetrically with Its ATPase Partners ClpX and ClpC1. Leodolter J; Warweg J; Weber-Ban E PLoS One; 2015; 10(5):e0125345. PubMed ID: 25933022 [TBL] [Abstract][Full Text] [Related]
14. ClpX(P) generates mechanical force to unfold and translocate its protein substrates. Maillard RA; Chistol G; Sen M; Righini M; Tan J; Kaiser CM; Hodges C; Martin A; Bustamante C Cell; 2011 Apr; 145(3):459-69. PubMed ID: 21529717 [TBL] [Abstract][Full Text] [Related]
15. Disassembly of the Mu transposase tetramer by the ClpX chaperone. Levchenko I; Luo L; Baker TA Genes Dev; 1995 Oct; 9(19):2399-408. PubMed ID: 7557391 [TBL] [Abstract][Full Text] [Related]
16. Nucleotide-dependent substrate handoff from the SspB adaptor to the AAA+ ClpXP protease. Bolon DN; Grant RA; Baker TA; Sauer RT Mol Cell; 2004 Nov; 16(3):343-50. PubMed ID: 15525508 [TBL] [Abstract][Full Text] [Related]
17. Subunit asymmetry and roles of conformational switching in the hexameric AAA+ ring of ClpX. Stinson BM; Baytshtok V; Schmitz KR; Baker TA; Sauer RT Nat Struct Mol Biol; 2015 May; 22(5):411-6. PubMed ID: 25866879 [TBL] [Abstract][Full Text] [Related]
18. Asymmetric interactions of ATP with the AAA+ ClpX6 unfoldase: allosteric control of a protein machine. Hersch GL; Burton RE; Bolon DN; Baker TA; Sauer RT Cell; 2005 Jul; 121(7):1017-27. PubMed ID: 15989952 [TBL] [Abstract][Full Text] [Related]
19. ClpX-mediated remodeling of mu transpososomes: selective unfolding of subunits destabilizes the entire complex. Burton BM; Williams TL; Baker TA Mol Cell; 2001 Aug; 8(2):449-54. PubMed ID: 11545746 [TBL] [Abstract][Full Text] [Related]
20. Versatile modes of peptide recognition by the ClpX N domain mediate alternative adaptor-binding specificities in different bacterial species. Chowdhury T; Chien P; Ebrahim S; Sauer RT; Baker TA Protein Sci; 2010 Feb; 19(2):242-54. PubMed ID: 20014030 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]