These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

262 related articles for article (PubMed ID: 25797238)

  • 1. Asymmetric development of dorsal and ventral attention networks in the human brain.
    Farrant K; Uddin LQ
    Dev Cogn Neurosci; 2015 Apr; 12():165-74. PubMed ID: 25797238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Altered attention networks and DMN in refractory epilepsy: A resting-state functional and causal connectivity study.
    Jiang LW; Qian RB; Fu XM; Zhang D; Peng N; Niu CS; Wang YH
    Epilepsy Behav; 2018 Nov; 88():81-86. PubMed ID: 30243110
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functional Connectivity of the Dorsal Attention Network Predicts Selective Attention in 4-7 year-old Girls.
    Rohr CS; Vinette SA; Parsons KAL; Cho IYK; Dimond D; Benischek A; Lebel C; Dewey D; Bray S
    Cereb Cortex; 2017 Sep; 27(9):4350-4360. PubMed ID: 27522072
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional-structural degeneration in dorsal and ventral attention systems for Alzheimer's disease, amnestic mild cognitive impairment.
    Qian S; Zhang Z; Li B; Sun G
    Brain Imaging Behav; 2015 Dec; 9(4):790-800. PubMed ID: 25452158
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lateralization in intrinsic functional connectivity of the temporoparietal junction with salience- and attention-related brain networks.
    Kucyi A; Hodaie M; Davis KD
    J Neurophysiol; 2012 Dec; 108(12):3382-92. PubMed ID: 23019004
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Deconstructing the architecture of dorsal and ventral attention systems with dynamic causal modeling.
    Vossel S; Weidner R; Driver J; Friston KJ; Fink GR
    J Neurosci; 2012 Aug; 32(31):10637-48. PubMed ID: 22855813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent TMS-fMRI Reveals Interactions between Dorsal and Ventral Attentional Systems.
    Leitão J; Thielscher A; Tünnerhoff J; Noppeney U
    J Neurosci; 2015 Aug; 35(32):11445-57. PubMed ID: 26269649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effective connectivity during feature-based attentional capture: evidence against the attentional reorienting hypothesis of TPJ.
    DiQuattro NE; Sawaki R; Geng JJ
    Cereb Cortex; 2014 Dec; 24(12):3131-41. PubMed ID: 23825319
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interaction of stimulus-driven reorienting and expectation in ventral and dorsal frontoparietal and basal ganglia-cortical networks.
    Shulman GL; Astafiev SV; Franke D; Pope DL; Snyder AZ; McAvoy MP; Corbetta M
    J Neurosci; 2009 Apr; 29(14):4392-407. PubMed ID: 19357267
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Causal interactions in attention networks predict behavioral performance.
    Wen X; Yao L; Liu Y; Ding M
    J Neurosci; 2012 Jan; 32(4):1284-92. PubMed ID: 22279213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional connectivity between ventral and dorsal frontoparietal networks underlies stimulus-driven and working memory-driven sources of visual distraction.
    Greene CM; Soto D
    Neuroimage; 2014 Jan; 84():290-8. PubMed ID: 24004695
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bottom-Up and Top-Down Factors Differentially Influence Stimulus Representations Across Large-Scale Attentional Networks.
    Long NM; Kuhl BA
    J Neurosci; 2018 Mar; 38(10):2495-2504. PubMed ID: 29437930
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intrinsic functional connectivity predicts individual differences in distractibility.
    Poole VN; Robinson ME; Singleton O; DeGutis J; Milberg WP; McGlinchey RE; Salat DH; Esterman M
    Neuropsychologia; 2016 Jun; 86():176-82. PubMed ID: 27132070
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increase of posterior connectivity in aging within the Ventral Attention Network: A functional connectivity analysis using independent component analysis.
    Deslauriers J; Ansado J; Marrelec G; Provost JS; Joanette Y
    Brain Res; 2017 Feb; 1657():288-296. PubMed ID: 28012826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-Scale Granger Causal Brain Network based on Resting-State fMRI data.
    Wang X; Wang R; Li F; Lin Q; Zhao X; Hu Z
    Neuroscience; 2020 Jan; 425():169-180. PubMed ID: 31794821
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Altered attention networks in benign childhood epilepsy with centrotemporal spikes (BECTS): A resting-state fMRI study.
    Xiao F; Li L; An D; Lei D; Tang Y; Yang T; Ren J; Chen S; Huang X; Gong Q; Zhou D
    Epilepsy Behav; 2015 Apr; 45():234-41. PubMed ID: 25825370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Topological organization of functional brain networks in healthy children: differences in relation to age, sex, and intelligence.
    Wu K; Taki Y; Sato K; Hashizume H; Sassa Y; Takeuchi H; Thyreau B; He Y; Evans AC; Li X; Kawashima R; Fukuda H
    PLoS One; 2013; 8(2):e55347. PubMed ID: 23390528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atypical developmental of dorsal and ventral attention networks in autism.
    Farrant K; Uddin LQ
    Dev Sci; 2016 Jul; 19(4):550-63. PubMed ID: 26613549
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Resting-state brain activity predicts selective attention deficits during hyperthermia exposure.
    Qian S; Yan S; Zhou C; Shi Z; Wang Z; Xiong Y; Zhou Y
    Int J Hyperthermia; 2020; 37(1):220-230. PubMed ID: 32126849
    [No Abstract]   [Full Text] [Related]  

  • 20. Variation in functional connectivity along anterior-to-posterior intraparietal sulcus, and relationship with age across late childhood and adolescence.
    Vinette SA; Bray S
    Dev Cogn Neurosci; 2015 Jun; 13():32-42. PubMed ID: 25951196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.