BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 25797309)

  • 1. Retinogenesis: stochasticity and the competency model.
    Barton A; Fendrik AJ
    J Theor Biol; 2015 May; 373():73-81. PubMed ID: 25797309
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reconstruction of rat retinal progenitor cell lineages in vitro reveals a surprising degree of stochasticity in cell fate decisions.
    Gomes FL; Zhang G; Carbonell F; Correa JA; Harris WA; Simons BD; Cayouette M
    Development; 2011 Jan; 138(2):227-35. PubMed ID: 21148186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gene expression is dynamically regulated in retinal progenitor cells prior to and during overt cellular differentiation.
    Dixit R; Tachibana N; Touahri Y; Zinyk D; Logan C; Schuurmans C
    Gene Expr Patterns; 2014 Jan; 14(1):42-54. PubMed ID: 24148613
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transitional Progenitors during Vertebrate Retinogenesis.
    Jin K; Xiang M
    Mol Neurobiol; 2017 Jul; 54(5):3565-3576. PubMed ID: 27194297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Timing and topography of cell genesis in the rat retina.
    Rapaport DH; Wong LL; Wood ED; Yasumura D; LaVail MM
    J Comp Neurol; 2004 Jun; 474(2):304-24. PubMed ID: 15164429
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intrinsically different retinal progenitor cells produce specific types of progeny.
    Cepko C
    Nat Rev Neurosci; 2014 Sep; 15(9):615-27. PubMed ID: 25096185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The early retinal progenitor-expressed gene Sox11 regulates the timing of the differentiation of retinal cells.
    Usui A; Mochizuki Y; Iida A; Miyauchi E; Satoh S; Sock E; Nakauchi H; Aburatani H; Murakami A; Wegner M; Watanabe S
    Development; 2013 Feb; 140(4):740-50. PubMed ID: 23318640
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-Cell RNA Sequencing of hESC-Derived 3D Retinal Organoids Reveals Novel Genes Regulating RPC Commitment in Early Human Retinogenesis.
    Mao X; An Q; Xi H; Yang XJ; Zhang X; Yuan S; Wang J; Hu Y; Liu Q; Fan G
    Stem Cell Reports; 2019 Oct; 13(4):747-760. PubMed ID: 31543471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Retinal stem cells and regeneration of vision system.
    Yip HK
    Anat Rec (Hoboken); 2014 Jan; 297(1):137-60. PubMed ID: 24293400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Defining retinal progenitor cell competence in Xenopus laevis by clonal analysis.
    Wong LL; Rapaport DH
    Development; 2009 May; 136(10):1707-15. PubMed ID: 19395642
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photoreceptor differentiation and integration of retinal progenitor cells transplanted into transgenic rats.
    Qiu G; Seiler MJ; Mui C; Arai S; Aramant RB; de Juan E; Sadda S
    Exp Eye Res; 2005 Apr; 80(4):515-25. PubMed ID: 15781279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ikaros confers early temporal competence to mouse retinal progenitor cells.
    Elliott J; Jolicoeur C; Ramamurthy V; Cayouette M
    Neuron; 2008 Oct; 60(1):26-39. PubMed ID: 18940586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of retinal stem cells from rat optic cup at embryonic day 12.5 (tailbud stage).
    Huang XY; Yin ZQ; Tan XL
    Cell Tissue Res; 2008 Sep; 333(3):381-93. PubMed ID: 18607633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Reconciling competence and transcriptional hierarchies with stochasticity in retinal lineages.
    Boije H; MacDonald RB; Harris WA
    Curr Opin Neurobiol; 2014 Aug; 27(100):68-74. PubMed ID: 24637222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hypoxia increases the yield of photoreceptors differentiating from mouse embryonic stem cells and improves the modeling of retinogenesis in vitro.
    Garita-Hernández M; Diaz-Corrales F; Lukovic D; González-Guede I; Diez-Lloret A; Valdés-Sánchez ML; Massalini S; Erceg S; Bhattacharya SS
    Stem Cells; 2013 May; 31(5):966-78. PubMed ID: 23362204
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cell fate determination in the vertebrate retina.
    Bassett EA; Wallace VA
    Trends Neurosci; 2012 Sep; 35(9):565-73. PubMed ID: 22704732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ganglion cells are required for normal progenitor- cell proliferation but not cell-fate determination or patterning in the developing mouse retina.
    Mu X; Fu X; Sun H; Liang S; Maeda H; Frishman LJ; Klein WH
    Curr Biol; 2005 Mar; 15(6):525-30. PubMed ID: 15797020
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A POU factor binding site upstream of the Chx10 homeobox gene is required for Chx10 expression in subsets of retinal progenitor cells and bipolar cells.
    Rowan S; Cepko CL
    Dev Biol; 2005 May; 281(2):240-55. PubMed ID: 15893976
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An in vitro comparison of two different subpopulations of retinal progenitor cells for self-renewal and multipotentiality.
    Xia J; Liu H; Fan X; Hu Y; Zhang Y; Wang Z; Zhou X; Luo M; Gu P
    Brain Res; 2012 Jan; 1433():38-46. PubMed ID: 22177772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Notch1 functions to suppress cone-photoreceptor fate specification in the developing mouse retina.
    Yaron O; Farhy C; Marquardt T; Applebury M; Ashery-Padan R
    Development; 2006 Apr; 133(7):1367-78. PubMed ID: 16510501
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.