BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 25797349)

  • 1. Combining recombinant ribonuclease U2 and protein phosphatase for RNA modification mapping by liquid chromatography-mass spectrometry.
    Houser WM; Butterer A; Addepalli B; Limbach PA
    Anal Biochem; 2015 Jun; 478():52-8. PubMed ID: 25797349
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improving RNA modification mapping sequence coverage by LC-MS through a nonspecific RNase U2-E49A mutant.
    Solivio B; Yu N; Addepalli B; Limbach PA
    Anal Chim Acta; 2018 Dec; 1036():73-79. PubMed ID: 30253839
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Removal of 3'-phosphate group by bacterial alkaline phosphatase improves oligonucleotide sequence coverage of RNase digestion products analyzed by collision-induced dissociation mass spectrometry.
    Krivos KL; Addepalli B; Limbach PA
    Rapid Commun Mass Spectrom; 2011 Dec; 25(23):3609-16. PubMed ID: 22095510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of RNA sequence isomer by isotope labeling and LC-MS/MS.
    Li S; Limbach PA
    J Mass Spectrom; 2014 Nov; 49(11):1191-8. PubMed ID: 25395135
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced detection of post-transcriptional modifications using a mass-exclusion list strategy for RNA modification mapping by LC-MS/MS.
    Cao X; Limbach PA
    Anal Chem; 2015 Aug; 87(16):8433-40. PubMed ID: 26176336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the 2',3' cyclic phosphodiesterase activities of Clostridium thermocellum polynucleotide kinase-phosphatase and bacteriophage lambda phosphatase.
    Keppetipola N; Shuman S
    Nucleic Acids Res; 2007; 35(22):7721-32. PubMed ID: 17986465
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of RNA nucleoside modifications with the uridine-specific ribonuclease MC1 from Momordica charantia.
    Addepalli B; Lesner NP; Limbach PA
    RNA; 2015 Oct; 21(10):1746-56. PubMed ID: 26221047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global identification of transfer RNAs by liquid chromatography-mass spectrometry (LC-MS).
    Wetzel C; Limbach PA
    J Proteomics; 2012 Jun; 75(12):3450-64. PubMed ID: 21982830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mapping RNA-protein interactions in ribonuclease P from Escherichia coli using disulfide-linked EDTA-Fe.
    Biswas R; Ledman DW; Fox RO; Altman S; Gopalan V
    J Mol Biol; 2000 Feb; 296(1):19-31. PubMed ID: 10656815
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNase Z in Escherichia coli plays a significant role in mRNA decay.
    Perwez T; Kushner SR
    Mol Microbiol; 2006 May; 60(3):723-37. PubMed ID: 16629673
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of FinP antisense RNA from F-like plasmids: the RNA-binding protein, FinO, protects FinP from ribonuclease E.
    Jerome LJ; van Biesen T; Frost LS
    J Mol Biol; 1999 Jan; 285(4):1457-73. PubMed ID: 9917389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using immobilized enzymes to reduce RNase contamination in RNase mapping of transfer RNAs by mass spectrometry.
    Butterer A; Zorc M; Castleberry CM; Limbach PA
    Anal Bioanal Chem; 2012 Mar; 402(9):2701-11. PubMed ID: 22327965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ribonuclease U2: cloning, production in Pichia pastoris and affinity chromatography purification of the active recombinant protein.
    Martínez-Ruiz A; García-Ortega L; Kao R; Oñaderra M; Mancheño JM; Davies J; Martínez del Pozo A; Gavilanes JG
    FEMS Microbiol Lett; 2000 Aug; 189(2):165-9. PubMed ID: 10930732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved RNA modification mapping of cellular non-coding RNAs using C- and U-specific RNases.
    Thakur P; Estevez M; Lobue PA; Limbach PA; Addepalli B
    Analyst; 2020 Feb; 145(3):816-827. PubMed ID: 31825413
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Retroregulation of the bacteriophage lambda int gene: limited secondary degradation of the RNase III-processed transcript.
    Plunkett G; Echols H
    J Bacteriol; 1989 Jan; 171(1):588-92. PubMed ID: 2521618
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relative quantitation of transfer RNAs using liquid chromatography mass spectrometry and signature digestion products.
    Castleberry CM; Limbach PA
    Nucleic Acids Res; 2010 Sep; 38(16):e162. PubMed ID: 20587503
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E.
    Callaghan AJ; Aurikko JP; Ilag LL; Günter Grossmann J; Chandran V; Kühnel K; Poljak L; Carpousis AJ; Robinson CV; Symmons MF; Luisi BF
    J Mol Biol; 2004 Jul; 340(5):965-79. PubMed ID: 15236960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable Isotope Labeling for Improved Comparative Analysis of RNA Digests by Mass Spectrometry.
    Paulines MJ; Limbach PA
    J Am Soc Mass Spectrom; 2017 Mar; 28(3):551-561. PubMed ID: 28105550
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Catalytic properties of RNase BN/RNase Z from Escherichia coli: RNase BN is both an exo- and endoribonuclease.
    Dutta T; Deutscher MP
    J Biol Chem; 2009 Jun; 284(23):15425-31. PubMed ID: 19366704
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNase III-dependent hydrolysis of lambda cII-O gene mRNA mediated by lambda OOP antisense RNA.
    Krinke L; Wulff DL
    Genes Dev; 1990 Dec; 4(12A):2223-33. PubMed ID: 2148537
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.